

APPENDIX L - INSTRUMENT PROCEDURES & AIRSPACE

Introduction

This appendix discusses the existing and recommended instrument procedures and airspace at the Minot International Airport (MOT). Instrument procedures allow aircraft to operate by reference to flight instrument under Instrument Flight Rules (IFR). Airspace is an irreplaceable resource around the airport necessary for the safe and orderly operation of aircraft.

The appendix will review the existing and recommended instrument procedures necessary for the airport including:

- Standard Instrument Approach Procedures
- Departure Procedures
- Taxiway Procedures

A copy of the published instrument procedures for the airport is included at the end of this appendix. This document will also review the existing and recommended airspace standards necessary for the airport including:

- Airspace Classification
- Part 77 Civil Airport Imaginary Surfaces
- Runway Approach/Departure Surfaces
- Terminal Instrument Procedures (TERPS)
- One Engine Inoperative (OEI) Surfaces
- Other Airport Design Surfaces

The type of instrument procedures and airspace required on an airport are determined by FAA guidance from on the airport's design standards. Available FAA guidance can be found by reviewing the latest Advisory Circulars, Handbooks and Orders.

Instrument Procedures

Standard Instrument Approach Procedures

Standard Instrument Approach Procedures (SIAP) are used by landing aircraft to navigate to the airport during IFR weather conditions: periods of lower flight visibility and/or lower cloud ceilings. FAA publishes SIAPs defining the horizontal and vertical flight path to land at an airport. Each procedure has varying flight visibility and cloud ceiling weather "minimums" published defining the minimum conditions where a legal approach can be made. Weather minimums established for each SIAP based on the approach type, airport/runway design, navigational aids, airspace obstructions, aircraft equipment and flight crew certification.

The flight visibility minimums are one factor to determine what FAA design standards apply to the airport or a particular runway. As a general rule, instrument approaches that provide procedures for aircraft to land in lower visibility and lower ceilings require additional protection space and have "flatter" approach paths to airports which restrict the height of objects off the ends of the runways.

Although FAA flight rule weather minimums change based on the airspace classification, flights typically must be conducted under IFR if cloud ceilings are less than 1,000 feet above the ground and/or flight visibility less than 3 statute miles. Conditions exceeding this minimum can be conducted

under Visual Flight Rules (VFR). Visual approaches to a runway require no published SIAP and can be conducted when the weather is acceptable for VFR flights.

FAA defines the types of SIAPs:

- **Non-Precision Approach (NPA):** A standard instrument approach procedure with horizontal course and no electronic vertical descent guidance. These approaches utilize satellite-based or ground-based navigational aids such as GPS, VOR or NDB.
- **Approach with Vertical Guidance (APV):** An instrument approach procedure providing electronic course and vertical descent electronic guidance. These approaches utilize ground-based Glideslope (GS) navigational aids or satellite-based navigational aids such as a Localizer Performance with Vertical Guidance (LPV).
- **Precision Approach (PA):** An instrument approach procedure with electronic course and vertical descent guidance and visibility minimums of less than $\frac{3}{4}$ mile visibility (4,000 foot Runway Visual Range - RVR). These approaches utilize ground-based navigational aids as part of an Instrument Landing System (ILS). The three components of an ILS are a Localizer (LOC) antenna for course guidance, a Glideslope (GS) antenna for vertical guidance and an Approach Lighting System (ALS).

See **Appendix K** for discussion of navigational aids.

Approaches may be conducted straight-in to a runway end or allow circling to the landing runway. Typical straight-in instrument approach weather minimums for runways that meet all requirements are outlined in the following table:

Table L-1 - Typical Instrument Approach Minimums

Approach Procedure	Approach Type	Cloud Ceiling Minimum (HAT)	Visibility Minimum RVR, s.m.
ILS - Category III ¹	Precision (PA)	< 100 feet	\leq 1200' RVR
ILS - Category II	Precision (PA)	100 feet	1200' RVR
ILS - Category I	Precision (PA)	200 feet	2400'/1800' RVR
LPV	Approach with Vertical Guidance (APV)	250 feet*	1 mile*
LNAV/VNAV	Non-Precision (NPI)	400 feet	1 mile
LNAV	Non-Precision (NPI)	400 feet	1 mile
VOR	Non-Precision (NPI)	400 feet	1 mile
None	Visual	1,000 feet	3 miles

Note: HAT = Height Above Touchdown, RVR = Runway Visual Range, s.m. = statute miles (reported), ILS = Instrument Landing System, LPV = Localizer Performance with Vertical Guidance, LNAV = Lateral Navigation, VNAV = Vertical Navigation, VOR = Very High Frequency Omni-Directional Range

*Lowest LPV minimums published in the United States is 200 feet cloud ceiling and $\frac{3}{4}$ mile visibility.

Source: [FAA Advisory Circular AC 150/5300-13A](#), [FAA Aeronautical Information Manual](#), KLJ Analysis

FAA defines the minimum airport infrastructure standards for each type of instrument approach in [FAA Advisory Circular 150/5300-13A Airport Design](#) as summarized in **Figure L-1**.

¹ There are three different levels of Category III ILS approaches, each requiring a higher category of airborne equipment, crew training and airfield infrastructure requirements. Category A allows for a decision height below 100 feet with 700 feet RVR. Category B allows for a decision height below 50 feet with an RVR as low as 150 feet. Category C allows for zero decision height and zero RVR.

Figure L-1 - Standards for PA and APV with <250 ft. HATH

AC 150/5300-13A

9/28/2012

Table 3-4. Standards for Instrument Approach Procedures

Visibility Minimums ¹	< 3/4 statute mile	3/4 to < 1 statute mile	≥ 1 statute mile straight-in	Circling ²
HATH ³	< 250 ft	≥ 250 ft	≥ 250 ft	≥ 350 ft
TERPS GQS ⁴	Clear	Clear	Clear	Not applicable
PA final approach surfaces ⁵	Clear	Not Required	Not Required	Not applicable
POFZ (PA & APV only)	Required	Not Required	Not Required	Not applicable
TERPS Chapter 3, Section 3	34:1 clear	20:1 clear	20:1 clear ⁶	20:1 clear ⁶
ALP ⁷	Required	Required	Required	Recommended
Minimum Runway Length	4,200 ft (paved)	3,200 ft ^{8,9}	3,200 ft ^{8,9}	3,200 ft ^{8,9}
Runway Markings (See AC 150/5340-1)	Precision	Non-precision ⁹	Non-precision ⁹	Visual (Basic) ⁹
Holding Position Signs & Markings (See AC 150/5340-1, AC 150/5340-18)	Precision	Non-precision ⁹	Non-precision ⁹	Visual (Basic) ⁹
Runway Edge Lights ¹⁰	HIRL / MIRL	HIRL / MIRL	MIRL / LIRL	MIRL / LIRL (Required only for night minimums)
Parallel Taxiway ¹¹	Required	Recommended	Recommended	Recommended
Approach Lights ¹²	MALSR, SSALR, or ALSF	Recommended ¹³	Recommended ¹³	Not Required
Applicable Runway Design Standards, e.g. OFZ	< 3/4-statute mile approach visibility minimums	≥ 3/4-statute mile approach visibility minimums	≥ 3/4-statute mile approach visibility minimums	Not Required
Threshold Siting Criteria To Be Met (Reference paragraph 303)	Table 3-2, row 7	Table 3-2, row 6	Table 3-2, rows 1-5	Table 3-2, rows 1-4
Survey Required ¹⁴	VGS	VGS (PA & APV) NVGS	NVGS ¹⁵	NVGS ¹⁶

Notes:

1. Visibility minimums are subject to the application of Order 8260.3 ("TERPS"), and associated orders or this table, whichever is higher. To qualify for each visibility (or circling), all requirements within the same column must be met or exceeded.
2. All runways authorized for circling must meet threshold siting (reference paragraph 303), OFZ (reference paragraph 308), and TERPS Chapter 3, Section 3 criteria.
3. Height Above Airport (HAA) for circling. The HATH/HAA indicated is for planning purposes; actual obtainable HATH/HAA is determined by TERPS and may be higher due to obstacles or other requirements. HATH less than 250 ft must comply with requirements in < 3/4 statute mile column regardless of published visibility.
4. GQS is applicable to PA and APV only. See Table 3-2, row 8.
5. Applicable to PA only, as defined by paragraph 102. If not clear, HATH must be increased to 250 ft or greater (as required by TERPS).
6. If not clear, obstacles must be lighted (see AC 70/7460-1) or procedure/circling runway restricted to day only. In certain circumstance, a VGSI may be used in lieu of obstruction lighting as defined in TERPS.
7. An ALP is only required for obligated airports in the NPIAS; it is recommended for all others.
8. Runways less than 3,200 ft are protected by Part 77 to a lesser extent. However, runways as short as 2,400 ft could support an instrument approach provided the lowest HATH is based on clearing any 200-ft (61 m) obstacle within the final approach segment.
9. Unpaved runways require case-by-case evaluation by the RAPT.
10. Runway edge lighting is required for night approach minimums. High intensity lights are required for RVR-based minimums.
11. A full-length parallel taxiway must lead to the threshold.
12. To achieve lower visibility minimums based on credit for lighting, a full approach light system (ALSF-1, ALSF-2, SSALR, or MALSR) is required for visibility < 3/4 statute mile. Intermediate (MALSF, MALS, SSALF, SSALS, SALS/SALSF) or Basic (ODALS) systems will result in higher visibility minimums. An ALSF-1 or ALSF-2 is required for CAT II/III ILS.
13. ODALS, MALS, SSALS, and SALS are acceptable.
14. See AC 150/5300-18 for Vertically Guided Survey (VGS) and non-Vertically Guided Survey (NVGS) requirements.
15. For PA and APV only, the NVGS must be supplemented with the first 10,200 ft of the Vertically Guided Approach Surface.
16. Absence of the indicated survey does not preclude authorization to establish circling to a runway but may result in increased HATH and visibility.

EXISTING

Meteorological conditions that affect the facility requirements of an airport include wind coverage and weather condition encountered. True hourly metrological data was reviewed data from the on-airport ASOS facility from 2005-2014 available from the National Climatic Data Center (NCDC). Periodic weather observations within each hour were removed. This method provides a comprehensive look into the true average weather trends at an airport without skewing conditions toward IFR where multiple observations may be taken each hour due to changing conditions.

Weather conditions are evaluated based on the two different flight rules, VFR and IFR. Visual Meteorological Conditions (VMC) are encountered when the visibility is 3 nautical miles or greater, and the cloud ceiling height is 1,000 feet or greater. Conditions less than these weather minimums are considered Instrument Meteorological Conditions (IMC) requiring all flights to be operated under IFR.

When IMC weather conditions occur, aircraft must operate under IFR and utilize instrument approach procedures to the runway. These IMC conditions drive the need to accommodate instrument approach procedures with sufficient weather minimums to enhance airport utilization. IMC conditions occur 9.66 percent of the time at MOT.

Current Category I ILS instrument approach weather minimums are 200-foot cloud ceiling and ½ mile flight visibility for Runway 31. Weather conditions are broken down into occurrence percentages based on current instrument approach minimums in the following table.

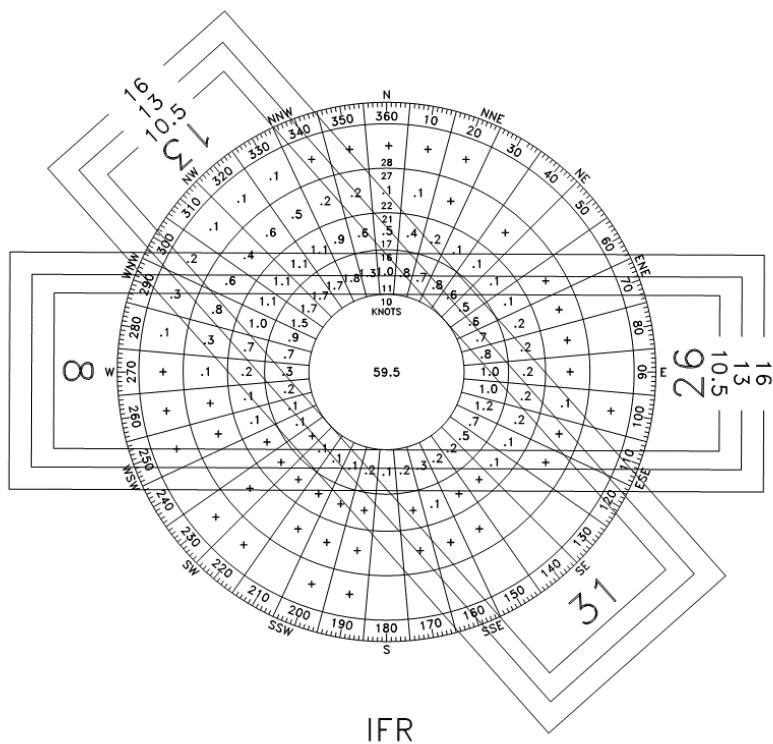
Table L-2 - Meteorological Analysis

Minimum Weather Condition	Cloud Ceiling Minimum	Visibility Minimum	Change	Total Observation Percentage
Above Marginal VFR	3,000 feet	5 miles	-	78.99%
Marginal VFR	1,000 feet	3 miles	11.35%	90.34%
IFR as low as Category I	200 feet	½ mile	8.45%	98.79%
IFR as low as Category II	100 feet	¼ mile	1.08%	99.87%
IFR Category III & Below	0 feet	1/8 mile	0.13%	100.00%

Source: [National Climatic Data Center](#) data from Minot International Airport (2005-2014).

VFR = Visual Flight Rules, IFR = Instrument Flight Rules

Based on cloud ceiling and visibility observations, MOT can be accessed 98.79% of the time with the current Category I approach. This equates to 106 hours per year or the equivalent of 4.4 days where the airport is inaccessible. An approach procedure with Category II minimums can provide another 95 hours of accessibility per year, or 3.94 days. This could reduce the inaccessibility of the airport by about 89 percent.


The SIAPs should be aligned with the prevailing wind that occurs during IFR conditions. The base information was collected from the windrose file generator on the FAA Airports GIS website. This source collected all observation data for the past 10 years at MOT from the NCDC.

The IFR windrose shown in **Figure L-2** depicts the prevailing wind during IFR weather conditions. The numbers within the compass rose indicates the strength and frequency of wind observations. The wind during IFR is generally from the northwest, favoring the use of Runway 31. This runway provides wind coverage where crosswind component is 10.5 knots or less a total of 56.28 percent of the time. The total wind coverage for Runway 13-31 during IFR conditions is 87.84 percent, as compared to 79.81 percent for Runway 8-26.

MOT has ten (10) different published instrument approaches procedures. The following table has the name of the approach, visibility and ceiling minimums for each approach. Copies of the current published SIAPs are located at the end of this appendix.

Figure L-2 - Instrument Flight Rules (IFR) Wind Rose

Source: [FAA Airports GIS Website](#) Data for Minot International Airport (2005-2014), KLJ Analysis

Table L-3 - Instrument Approach Procedures

Approach Procedure	Approach Type	Lowest Cloud Ceiling Minimum (HAT)	Lowest Visibility Minimum RVR, n.m.
ILS or LOC RWY 31	ILS (PA)	1873' (200')	2400' RVR, 1/2 mile
LOC/DME BC RWY 13	LOC (NPI)	2060' (358')	1 mile
RNAV (GPS) RWY 8	LPV (APV)	1991' (279')	1 mile
RNAV (GPS) RWY 13	LPV (APV)	2021' (319')	1 mile
RNAV (GPS) RWY 26	LPV (APV)	1932' (250')	1 mile
RNAV (GPS) RWY 31	LPV (APV)	1929' (250')	2400' RVR, 1/2 mile
VOR RWY 8	VOR (NPI)	2760' (1048')	1 1/4 mile
VOR RWY 13	VOR (NPI)	498' (2200')	1 mile
VOR RWY 26	VOR (NPI)	858' (2540')	1 mile
VOR RWY 31	VOR (NPI)	2200' (527')	2400' RVR, 1/2 mile

Note: HAT = Height Above Touchdown, RVR = Runway Visual Range, n.m. = statute miles (reported), ILS = Instrument Landing System, LOC = Localizer, RNAV = Area Navigation, GPS = Global Positioning System, LPV = Localizer Performance with Vertical Guidance, NPI = Non-Precision Instrument Approach, APV = Approach with Vertical Guidance, PA = Precision Instrument Approach, VOR = Very High Frequency Omni-Directional Range

Source: [FAA](#)

The lowest weather minimums that an aircraft can operate are 200 foot ceiling and 1/2 mile visibility when wind conditions are appropriate for Runway 31. When the winds are appropriate for Runway 13, the lowest weather minimums are a 319 foot ceiling and 1 mile visibility available through an APV

procedure. The airport also has approaches with for Runway 8 and 26 through an APV procedure. The lowest weather minimums are 250 foot ceiling and 1 mile visibility for Runway 26. The nearest public airport with comparable or better instrument approach is the Bismarck Municipal Airport with an ILS approach to Runway 13 and 31.

FUTURE & ULTIMATE

As of September 2015, there are currently two new SIAPs under development for MOT. These appear to be updates to existing procedures. These include the development of an updated LOC/DME BC RWY 13 procedure scheduled to be published on December 10, 2015, and an RNAV (GPS) RWY 8 procedure scheduled to be published on October 15, 2015.

However, since the easterly winds during IFR conditions can favor approaches for Runway 13 it is recommended that lower minimums be pursued. Very few new ILS systems are being installed nationwide. It is recommended the airport pursue lower approach minimums through GPS technology and the establishment of an approach lighting system. GPS currently can provide minimums nearly equivalent to Category I precision approaches. Further coordination with FAA is required to conduct a feasibility study for the lowest weather minimums to Runway 13.

Upgrading approaches to capture lower visibility minimums of $\frac{3}{4}$ mile and $\frac{1}{2}$ mile requires additional airport design standards to be met (see **Appendix H - Airfield Design Requirements**), including maintaining a compatible FAA Runway Protection Zone beyond the end of the runway. Additional clear airspace surfaces are also required. In the interim, the airport can pursue installation of a MALS (see **Appendix K - Navigational Aids**) which would improve the visibility minimums for Runway 13 from 1 mile to $\frac{3}{4}$ mile.

Each runway end was reviewed to quantify the benefit of lower approach minimums. Lower minimums on Runway 13 to $\frac{3}{4}$ mile would increase utility to this runway end by 16%. The benefit is almost doubled if minimums are reduced to a Category I ILS. Lowering approach minimums to a Category II ILS for Runway 31 would have a benefit of capturing nearly 50% additional utility to this runway end - a significant net benefit to airport users. This would require operational justification and new runway NAVAID infrastructure.

If minimums to Runway 8 are lowered to 200 feet and $\frac{3}{4}$ mile, a net 39% benefit is realized to that runway end. However, due to land use compatibility constraints from a larger RPZ, upgrading this approach is not recommended. Many of the operations that would benefit from a Runway 8 approach upgrade would be captured with lower weather minimums to Runway 13.

Table L-4 identifies the benefit of lower weather minimums for runway approaches at MOT.

Table L-4 - Additional Capture Meteorological Analysis

Runway End	Approach Type	Proposed Minimums	Additional Capture	Additional Capture Wind Coverage*	Net Additional Capture	Net Additional Utility
13	APV	250 feet, $\frac{3}{4}$ mile	1.09%	46.85%	0.513%	15.6%
13	CAT-I ILS	200 feet, $\frac{1}{2}$ mile	2.06%	47.58%	0.981%	29.8%
31	CAT-II ILS	100 feet, $\frac{1}{4}$ mile	1.09%	55.33%	0.605%	49.2%
8	APV	250 feet, $\frac{3}{4}$ mile	0.34%	41.92%	0.114%	5.7%
8	APV	200 feet, $\frac{3}{4}$ mile	0.99%	76.90%	0.763%	30.0%
26	APV	250 feet, $\frac{3}{4}$ mile	0.34%	31.79%	0.109%	4.3%
26	APV	200 feet, $\frac{3}{4}$ mile	0.99%	40.65%	0.403%	15.9%

Source: [FAA Airports GIS Website](#) Data for Minot International Airport (2005-2014), KLJ Analysis

RVR = Runway Visual Range, ILS = Instrument Landing System; *Wind coverage by runway end only. 10.5 knot crosswind component for Runway 13-31, 13 knot crosswind for Runway 8-26

Departure Procedures

Departure procedures are established for an airport to allow aircraft to safely depart and climb out from the immediate airport environment to transition to an altitude that ensures required obstacle clearance standards are met. Some airports may have prevailing obstacles in the departure corridor. These may require takeoff weather minimums for commercial flights, and/or an increased rate of climb or special instructions for all flights. A standard climb rate gradient is 200 feet per nautical mile. Obstacles in the departure surface are noted to alert the pilot so they can be avoided.

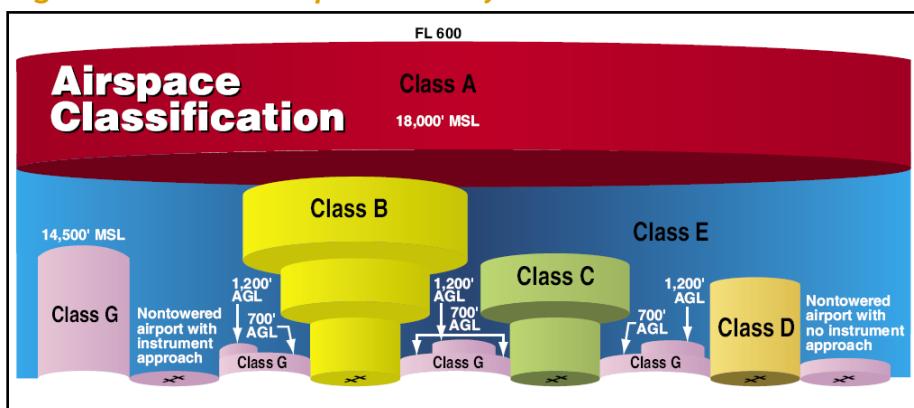
At MOT, obstacles require a minimum climb rate of 219 feet per nautical miles for departures off Runway 26 to the west in order to meet required obstacle clearance. Required weather minimums are 300-foot cloud ceiling and 1.5 miles of flight visibility. Obstacles are noted in the vicinity of Runway 26 departure zone. Individual obstacles are noted in the Runway 8 and 31 departure zones.

Airspace

Airspace is an important resource around airports that is essential for safe flight operations. There are established standards to identify airspace obstructions around airports. [FAA grant assurances \(obligations\)](#) require the airport sponsor to take appropriate action to assure that airspace is adequately cleared to protect instrument and visual flight operations by removing, lowering, relocating, marking or lighting, or otherwise mitigating existing airport hazards and preventing the establishment or creating of future airport hazards. Examples of obstructions include trees, buildings, poles, towers, terrain, mobile objects and aircraft tails. Sufficiently clear airspace near the approach and departure runway ends are vitally important for safe airport operations. An FAA aeronautical study should be completed to determine the operational impacts and necessary mitigation of obstructions (i.e. lowering, lighting, marking, publish operational restrictions). This section identifies overall airspace standards as well as existing and future standards for MOT.

Airspace Classification

Airspace protection above and around airports is necessary for safe operation of aircraft. Airspace must be protected from obstructions in order to prevent any loss of the airport's ability to handle aircraft. Airspace classes, air traffic operating rules, navigation aids, other airports, obstructions and noise abatement procedures affect airspace.


The Federal Aviation Act of 1958 gave the Federal Aviation Administration (FAA), then known as the Federal Aviation Agency, the responsibility for control of navigable airspace and regulation of aircraft operations within the United States. Federal Aviation Regulations (FAR) Part 91, General Operating and Flight Rules, prescribes rules governing airspace.

The National Airspace System (NAS) consists of various classifications of airspace regulated by the FAA. Airspace classification ensures the safe separation of VFR and IFR aircraft. Airspace is separated into controlled, uncontrolled, special use, or other airspace. Controlled airspace is classified as A, B, C, D, or E. Uncontrolled airspace is classified as G. These classes specify appropriate minimum cloud clearances, visibility requirements, and other operating requirements for aircraft. The major difference between controlled and uncontrolled airspace is that the FAA does not exercise air traffic control over aircraft operating within uncontrolled airspace.

Figure L-3 and Figure L-4 detail the different classes of airspace and weather minimums. **Appendix K** outlines the navigational aids available to support the airport and airspace classifications.

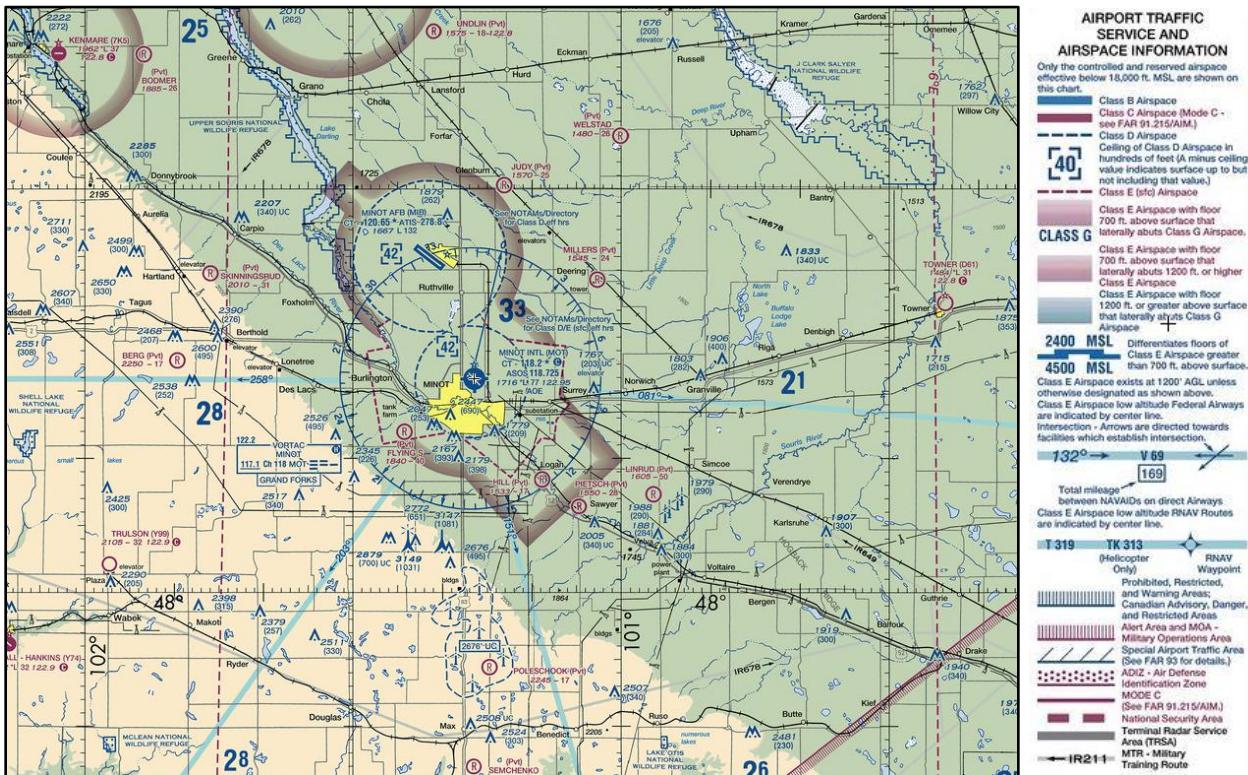
Figure L-3 - FAA Airspace Classifications

Source: [FAA Pilot's Handbook of Aeronautical Knowledge \(2008\)](#)

Figure L-4 - Visual Flight Rules (VFR) Weather Minimums

Airspace		Flight Visibility	Distance from Clouds
Class A		Not applicable	Not applicable
Class B		3 statute miles	Clear of clouds
Class C		3 statute miles	1,000 feet above 500 feet below 2,000 feet horizontal
Class D		3 statute miles	1,000 feet above 500 feet below 2,000 feet horizontal
Class E	At or above 10,000 feet MSL	5 statute miles	1,000 feet above 1,000 feet below 1 statute mile horizontal
	Less than 10,000 feet MSL	3 statute miles	1,000 feet above 500 feet below 2,000 feet horizontal
Class G	1,200 feet or less above the surface (regardless of MSL altitude).	Day, except as provided in section 91.155(b)	1 statute mile
		Night, except as provided in section 91.155(b)	3 statute miles
	More than 1,200 feet above the surface but less than 10,000 feet MSL.	Day	1 statute mile
		Night	3 statute miles
	More than 1,200 feet above the surface and at or above 10,000 feet MSL.		5 statute miles

Source: [FAA Pilot's Handbook of Aeronautical Knowledge \(2008\)](#)


EXISTING, FUTURE & ULTIMATE

Minot International Airport is within Class D controlled airspace served by an Airport Traffic Control Tower (ATCT). The Minot ATCT, referred to by call sign 'Magic City Tower', controls ground traffic within airfield movement areas and in the air within approximately a 5 nautical-mile radius of the Airport up to an elevation of 2,500 feet above ground level. Magic City ATCT normally operates from 7:00 a.m. to 10:00 p.m. daily. When the ATCT is not operating, the airspace becomes uncontrolled Class E.

Approach/Departure radar and communication services provided by Minot Approach Control. The Dakota Air Traffic Control Facility opened in 2008 and is located at Ellsworth Air Force Base in Rapid City, SD. Minot is served by a terminal radar approach control facility (TRACON) known in the U.S. Air Force as a radar approach control (RAPCON). These facilities are typically located at larger airports or in busy traffic areas and are responsible for controlling air traffic within a 30-50 nautical mile radius of the airport between the surface and 18,000 feet. The Minot RAPCON, referred to by call sign 'Minot Approach', controls traffic within approximately a 40 nautical mile radius of the Airport and up to an elevation of 18,000 feet. Minot Approach controls traffic arriving and departing and transitions traffic between the RAPCON airspace and the en-route cruise altitudes. Minot Approach provides this service for both Minot AFB and Minot International Airport and does so also when MOT ATCT is closed. A Remote Communications Outlet (RCO) is available to talk to the Flight Service Station on 122.2 MHz.

Minot Approach operates 24 hours per day. Minot International Airport and Minot Air Force Base have airspace in close proximity to each other as seen in **Exhibit L-1**. The two airports are physically 10 miles apart.

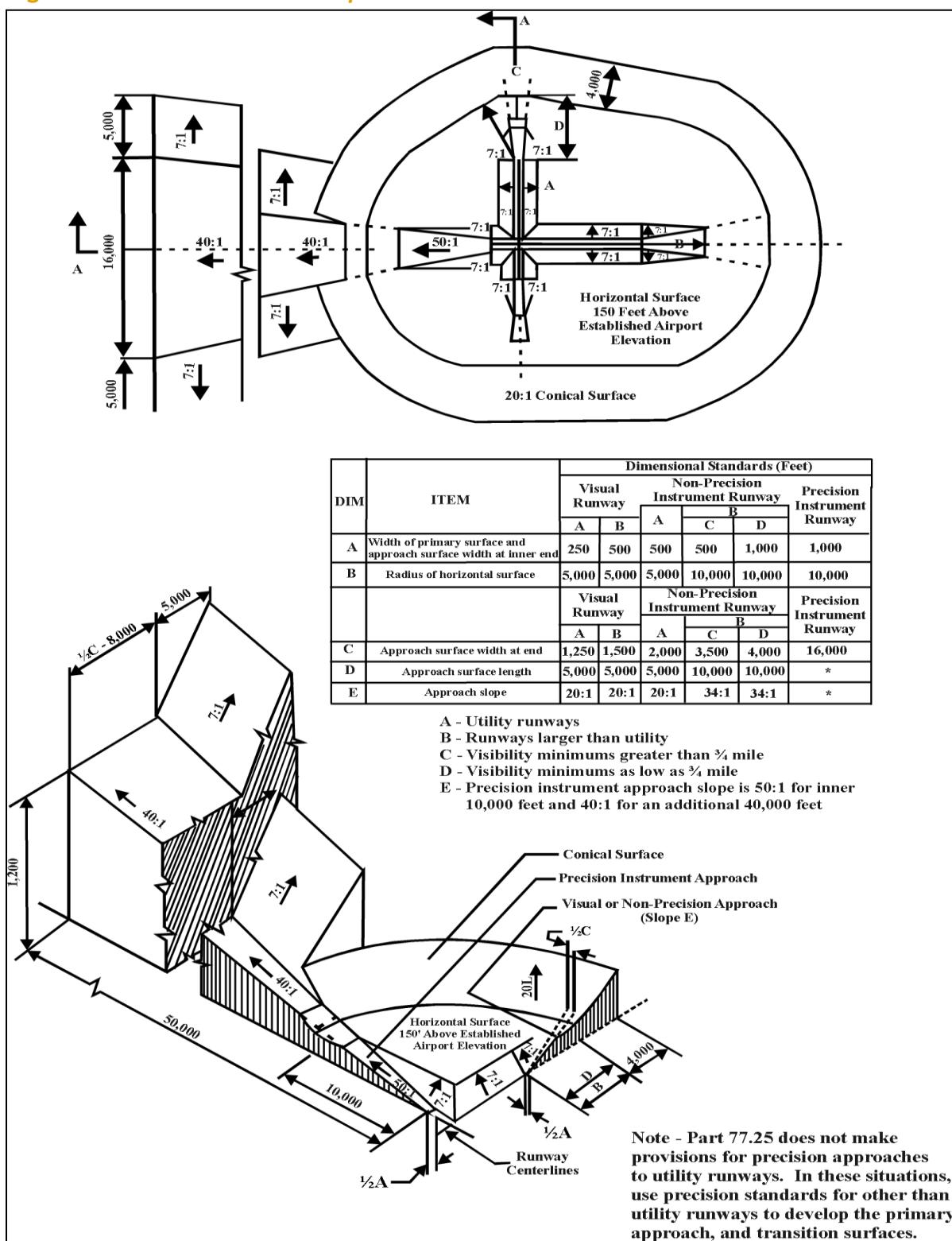
Exhibit L-1 - Surrounding Airspace

The FAR Part 77 surfaces are the protective surfaces most often used to provide height restriction zoning protection around an airport. These airspace surfaces include the primary, approach, transitional, horizontal and conical surfaces each with different standards. When evaluating penetrating obstruction, the FAA determines if an object is a hazard to air navigation and if corrective action is needed based on more in-depth minimum airspace standards (i.e. FAA Approach/Departure Surface). FAA notification criteria standards are also established in FAR Part 77. Examples of corrective action include removing, lowering, or obstruction lighting an object. A general diagram of the FAR Part 77 surfaces is shown in **Figure L-5**.

FAR Part 77 surfaces are identified below:

- **Primary Surface:** Imaginary airspace surface centered along the runway centerline, ending at the runway end for non-paved runways, and extending 200 feet beyond the runway ends for hard-surfaced runways. The width is defined as 250 feet for visual runways, 500 feet for non-precision runways greater than $\frac{3}{4}$ mile, and 1,000 feet for non-precision runways as low as $\frac{3}{4}$ mile and precision runways.
- **Approach Surface:** A surface centered along runway centerline extending outward and upward from the end of the primary surface. This airspace surface ensures the approach areas to each runway are clear of obstructions. The width and approach slope for the approach surface varies based on the type of runway and approach planned. Typical approach slopes are 20:1 (20 feet horizontal for every 1 vertical foot) for visual and non-precision utility runways, 34:1 for non-precision other-than utility runways, and 50:1 for precision runways out to 10,000 feet then 40:1 out to 50,000 feet.
- **Transitional Surface:** This imaginary surface extends outward and upward at right angles to the runway centerline and extended centerline, from the sides of the Primary Surface and the Approach Surfaces at a 7:1 slope. Precision approaches have defined transitional surfaces near the outer ends of the approach surface.
- **Horizontal Surface:** This airspace surface protects for aircraft operations in the vicinity of each airport. The horizontal surface is an imaginary airspace surface located 150 feet above the established airport elevation, with perimeters calculated from the end of each primary surface for a runway. The radius of the horizontal surface is 5,000 feet for each visual or utility runway, or 10,000 feet for non-precision or precision runways.
- **Conical Surface:** This surface extends upward and outward from the end of the horizontal surface for a distance of 4,000 feet at a 20:1 slope.

Sufficiently clear airspace is necessary for the safe and efficient use of aircraft arriving and departing an airport. FAR Part 77 airspace standards are defined by the most demanding approach to a runway. These definitions are included in **Table L-5**.


Table L-5 - FAR Part 77 Definitions

Approach Type	
Visual (V)	Runway intended solely for the operation of aircraft using visual approach procedures with no instrument approach designation on an approved FAA Airport Layout Plan.
Non-Precision (NP)	Runway having an existing instrument approach procedure with only horizontal guidance with no precision approach designation on an approved FAA Airport Layout Plan. Visibility minimums are typically 1 mile but as low as $\frac{3}{4}$ mile.
Precision (PIR)	Runway having an existing instrument approach procedure utilizing an Instrument Landing System (ILS) or other system with horizontal and vertical guidance. Visibility minimums are less than $\frac{3}{4}$ mile.
Runway Classification	
Utility	Runway constructed for and intended to be used by propeller driven aircraft of 12,500 pounds maximum gross weight or less.
Other-Than-Utility	Runway constructed for and intended to be used by turbine aircraft greater than 12,500 pounds.
Part 77 Classifications	
A	Utility Runways
B	Other Than Utility Runways
C	Visibility minimums greater than $\frac{3}{4}$ mile
D	Visibility minimums as low as $\frac{3}{4}$ mile
PIR	Precision Instrument Runway

Source: [14 CFR Part 77](#)

Figure L-5 - FAR Part 77 Airspace

Source: Federal Aviation Administration (FAA)

EXISTING

The combination of the approach type and the runway classification defines the dimensional criteria for each approach. The published Part 77 approach airspace dimensional criteria for MOT are identified in the table below.

Table L-6 - Existing Part 77 Approach Airspace Standards

Runway End	Approach Standards	Part 77 Code	Inner Width*	Outer Width	Length	Slope
13	Non-Precision Other than Utility (> 3/4 mile)	C	500'	3,500'	10,000'	34:1
31	Precision (< 1/2 mile)	PIR	1,000'	16,000'	50,000'	50:1/40:1
8	Non-Precision Other than Utility (> 3/4 mile)	C	500'	3,500'	10,000'	34:1
26	Non-Precision Other than Utility (> 3/4 mile)	C	500'	3,500'	10,000'	34:1

*Inner width is also the Primary Surface width driven by the most demanding approach to a runway.

Source: [14 CFR Part 77, FAA Form 5010-1 Airport Master Record for MOT](#)

According to the established rules, airspace surfaces must clear public roads by 15 feet, interstate highways by 17 feet, railroads by 23 feet, and private roads by 10 feet or the height of the most critical vehicle.

Table L-7 below lists of the controlling obstacle for each existing runway end as evaluated by FAA during regular airport inspections. Part 77 obstruction mitigation considerations include existing and future airport design standards, other airspace surfaces amount of penetration into the surface and the type of obstacle (natural, natural growth or man-made). A detailed obstruction identification and mitigation disposition is identified in the Airport Layout Plan developed at the end of this planning study and located in **Chapter 8 - Airport Layout Plan**.

Table L-7 - Controlling Part 77 Airspace Obstructions

FAA Form 5010 Airspace Obstructions						
Runway End	Surface	Object Type	Distance from End	Location from Centerline	Penetration	Slope to Clear (Required)
13	Approach	-	-	-	-	N/A (34:1)
31	Approach	-	-	-	-	N/A (50:1)
8	Approach	Trees	1,764'	616' Left	35'	19:1* (34:1)
26	Approach	-	-	-	-	N/A (34:1)

Notes: Penetration value estimated based. **RED** indicates does not meet current standards.

*24:1 slope to clear to Runway 26 displaced landing threshold (393 feet)

**Obstacle derived from 2012 ALP; not published in Airport Master Record

Source: MOT Airport Layout Plan (2012), [FAA Form 5010-1 Airport Master Record for MOT](#)

The existing FAR Part 77 obstructions to air navigation are discussed below:

- **Primary Surface** - There no obstructions other than those that are fixed-by-function
- **Approach Surface**
 - **Runway 13:** Since the 2012 ALP was published, numerous light poles along U.S. Highway 83 were lowered to an elevation below the existing 34:1 approach surface.

- **Runway 8:** Numerous trees and a light pole penetrate the existing 34:1 approach surface. When the runway end is shifted to the east by 870 feet, one tree will remain an obstruction which will be removed.
- **Transitional Surface** - There are trees that penetrate the existing Runway 8 transitional surface to the north of the approach surface.
- **Horizontal Surface** - According to the 2012 ALP, there are four (4) objects that penetrate the horizontal surface elevation of 1855.80 feet MSL including:
 - Water Tank (obstruction lighted) - 44' penetration
 - Tower (obstruction lighted) - 63' penetration
 - Water Tank (obstruction lighted - 5' penetration
 - Tower (unlighted) - 190' penetration
- **Conical Surface** - There are no existing airspace obstructions to this surface.

FUTURE & ULTIMATE

Each existing runway approach standard is sufficient for the design aircraft and usage forecast to occur within the planning period with the exception of Runway 13. As noted previously, easterly winds during IFR conditions make it a target to establish lower approach minimums to Runway 13. This runway end appears to be capable of accommodating the infrastructure and land use requirements needed for lower approach minimums as compared to Runway 8 or 26. In order to accomplish this there are several obstructions (e.g. light poles, building, road edge) which must be addressed to achieve a clear 50:1 approach surface for Runway 13.

Table L-8 - Future/Ultimate Part 77 Approach Airspace Standards

Runway End	Approach Standards	Part 77 Code	Inner Width*	Outer Width	Length	Slope
Future Airport Configuration						
31	Precision ($\leq 1/2$ mile)	PIR	1,000'	16,000'	50,000'	50:1/40:1
13	Non-Precision Other than Utility ($> 1/2$ mile)	D	1,000'	4,000'	10,000'	34:1
8	Non-Precision Other than Utility ($> 3/4$ mile)	C	500'	3,500'	10,000'	34:1
26	Non-Precision Other than Utility ($> 3/4$ mile)	C	500'	3,500'	10,000'	34:1
Ultimate Airport Configuration						
13	Precision	PIR	1,000'	16,000'	50,000'	50:1/40:1
31	Precision	PIR	1,000'	16,000'	50,000'	50:1/40:1
8	Non-Precision Other than Utility	C	500'	3,500'	10,000'	34:1
26	Non-Precision Other than Utility	C	500'	3,500'	10,000'	34:1

*Inner width is also the Primary Surface width driven by the most demanding approach to a runway.

Source: [14 CFR Part 77](#), [FAA Form 5010-1 Airport Master Record for MOT](#), KLJ Analysis. **BLUE** text indicates change from existing configuration.

Runway Approach/Departure Surfaces

FAA identifies approach surfaces that must be cleared at an absolute minimum for safety for landing aircraft. These surfaces are identified in **Figure L-6** and **Exhibit L-2** - "Table 3-2" of [FAA Advisory Circular 150/5300-13A, Airport Design](#). All objects must clear the surface for the applicable runway operational design standard to meet minimum aviation safety standards for a given runway landing threshold location.

Approach airspace penetrations require mitigation which may include the removal of the object or the runway landing threshold to be shifted or displaced down the runway. Penetrations to the departure surface may simply require the obstacle to be published, or require increasing the minimum aircraft climb rate or runway length operational restrictions. An FAA aeronautical study should be completed to determine the operations impacts and necessary mitigation. When usable landing or takeoff distances do not match the runway length, then a special application of declared distances should be used to meet operational safety requirements. Declared distances can be used to mitigate approach/departure obstructions, land use incompatibilities, or incompatible airport design areas.

Figure L-6 - Approach/Departure Standards Table

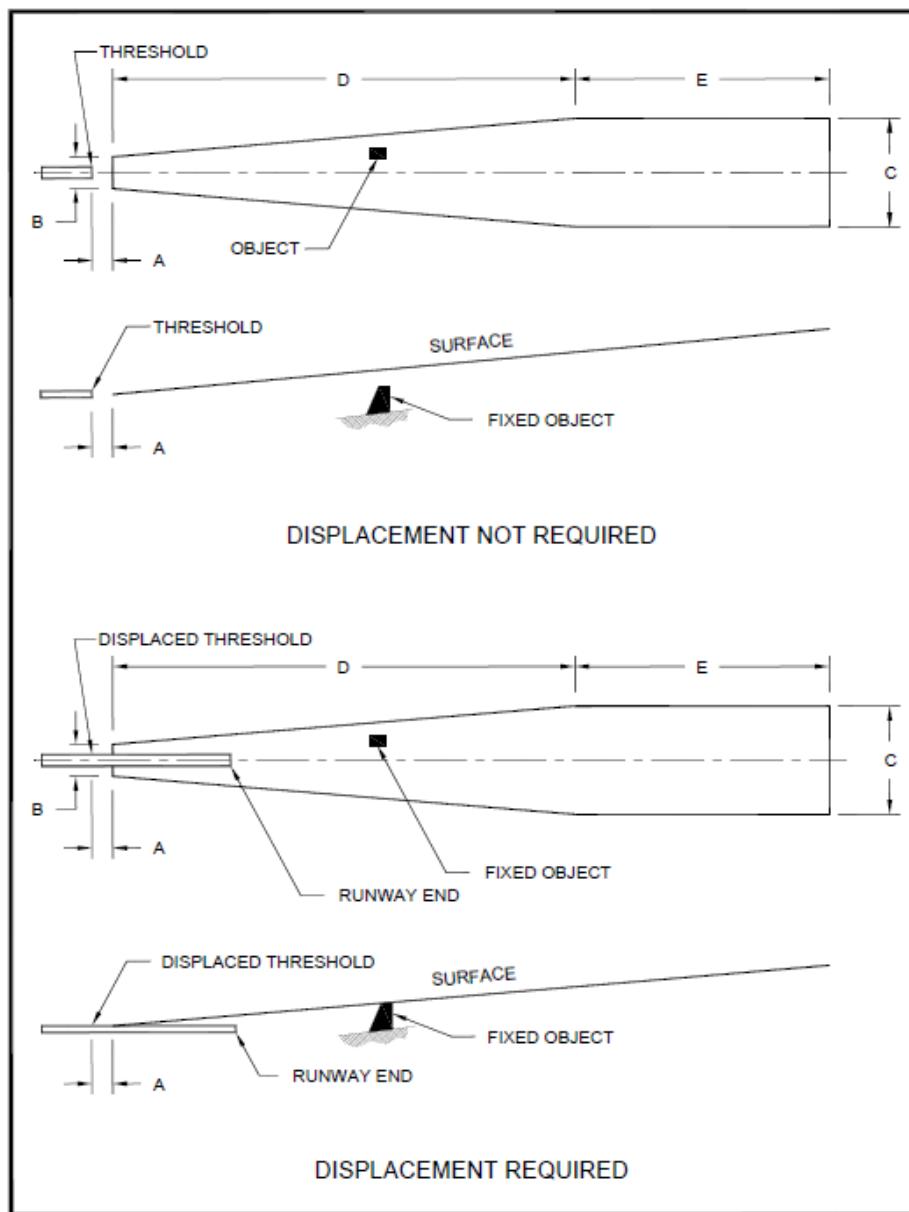
AC 150/5300-13A

9/28/2012

Table 3-2. Approach/departure standards table

Runway Type	DIMENSIONAL STANDARDS* Feet (Meters)					Slope/ OCS
	A	B	C	D	E	
1 Approach end of runways expected to serve small airplanes with approach speeds less than 50 knots. (Visual runways only, day/night)	0 (0)	120 (37)	300 (91)	500 (152)	2,500 (762)	15:1
2 Approach end of runways expected to serve small airplanes with approach speeds of 50 knots or more. (Visual runways only, day/night)	0 (0)	250 (76)	700 (213)	2,250 (686)	2,750 (838)	20:1
3 Approach end of runways expected to serve large airplanes (Visual day/night); or instrument minimums \geq 1 statute mile (1.6 km) (day only).	0 (0)	400 (122)	1000 (305)	1,500 (457)	8,500 (2591)	20:1
4 Approach end of runways expected to support instrument night operations, serving approach Category A and B aircraft only. ¹	200 (61)	400 (122)	3,800 (1158)	10,000 ² (3048)	0 (0)	20:1
5 Approach end of runways expected to support instrument night operations serving greater than approach Category B aircraft. ¹	200 (61)	800 (244)	3,800 (1158)	10,000 ² (3048)	0 (0)	20:1
6 Approach end of runways expected to accommodate instrument approaches having visibility minimums \geq 3/4 but < 1 statute mile (≥ 1.2 km but < 1.6 km), day or night.	200 (61)	800 (244)	3,800 (1158)	10,000 ² (3048)	0 (0)	20:1
7 Approach end of runways expected to accommodate instrument approaches having visibility minimums $< 3/4$ statute mile (1.2 km) or precision approach (ILS or GLS), day or night.	200 (61)	800 (244)	3,800 (1158)	10,000 ² (3048)	0 (0)	34:1
8 ^{3, 5, 6, 7} Approach end of runways expected to accommodate approaches with vertical guidance (Glide Path Qualification Surface [GQSS]).	0 (0)	Runway width + 200 (61)	1520 (463)	10,000 ² (3048)	0 (0)	30:1
9 Departure runway ends for all instrument operations.	0 ⁴ (0)	See Figure 3-4.				40:1

* The letters are keyed to those shown in [Figure 3-2](#).


Notes:

1. Marking and lighting of obstacle penetrations to this surface or the use of a Visual Guidance Slope Indicator (VGSI), as defined by [Order 8260.3](#), may avoid displacing the threshold.
2. 10,000 feet (3048 m) is a nominal value for planning purposes. The actual length of these areas is dependent upon the visual descent point position for 20:1 and 34:1, and DA point for the 30:1.
3. When objects exceed the height of the GQSS, an APV (ILS, PAR, LPV, LNAV/VNAV, etc.) is not authorized. Refer to [Table 3-4](#) and its footnote 3 for further information on GQSS.
4. Dimension A is measured relative to TODA (to include clearway).
5. Surface dimensions / OCS slope represent a nominal approach with 3 degree Glide Path Angle (GPA), 50 feet (15 m) TCH, < 500 feet (152 m) HATH. For specific cases, refer to [Order 8260.3](#). The OCS slope (30:1) supports a nominal approach of 3 degrees (also known as the GPA). This assumes a TCH of 50 feet (15 m). Three degrees is commonly used for ILS systems and VGSI aiming angles. This approximates a 30:1 approach slope that is between the 34:1 and the 20:1 approach surfaces of [Part 77](#). Surfaces cleared to 34:1 should accommodate a 30:1 approach without any obstacle clearance problems.
6. For runways with vertically guided approaches the criteria in row 8 is in addition to the basic criteria established within the table, to ensure the protection of the GQSS.
7. For planning purposes, determine a tentative DA based on a 3 degree GPA and a 50-foot (15 m) TCH.

Exhibit L-2 - Threshold Siting Based on an Approach Slope

9/28/2012

AC 150/5300-13A

Note: See [Table 3-2](#) for dimensional data.

Figure 3-2. Threshold siting based on approach slope

EXISTING

MOT currently meets the requirements for the existing approach surfaces for Runway 13, 31, and 26 ends. Runway 8 meets approach surface standards with the 393-foot displaced threshold.

All MOT runway ends have departure surfaces with obstructions to the 40:1 surface, which is not uncommon. Runway 26 has penetrations that require an increased aircraft climb rate for departures. This departure procedure is noted in FAA publications. The existing, future and ultimate approach/departure surface standards are provided in Table L-9.

Table L-9 - Approach/Departure Surface Requirements

Runway End(s)	Table 3-2 Row	Description	Slope
Existing			
8, 26, 13	5	Approaches supporting instrument night operations in greater than Category B aircraft	20:1
31	7	Approach end of runways expected to accommodate instrument approaches with minimums $<3/4$ mile	34:1
8, 26, 13, 31	8	Approach end of runways to accommodate approaches with vertical guidance	30:1
8, 26, 13, 31	9	Departure runway ends for all instrument operations	40:1
Future & Ultimate			
8, 26	5	Approaches supporting instrument night operations in greater than Category B aircraft	20:1
13	6	Instrument approaches having visibility minimums $\geq \frac{3}{4}$ but <1 statute mile, day or night	20:1
31	7	Approach end of runways expected to accommodate instrument approaches with minimums $<3/4$ mile	34:1
8, 26, 13, 31	8	Approach end of runways to accommodate approaches with vertical guidance	30:1
8, 26, 13, 31	9	Departure runway ends for all instrument operations	40:1

Source: [FAA Advisory Circular 150/5300-13A, Airport Design](#)

Note: Most critical row(s) shown. **BLUE** text indicates change from existing configuration.

FUTURE/ULTIMATE

MOT currently meets the requirements for the future and ultimate approach surfaces for Runway 8, 13, 26, and 31. The displacement to Runway 8 was reviewed and is not required for this approach surface.

All MOT runway ends will continue to have departure surfaces with obstructions to the 40:1 surface, which is not uncommon. No development is proposed that would penetrate the departure surfaces.

Terminal Instrument Procedures (TERPS)

The FAA has established standards to develop instrument procedures in the United States. [FAA Order 8260.3B, U.S. Standards for Terminal Instrument Procedures \(TERPS\)](#) and related orders outlines these complex standards to develop departure, climb, en-route, approach, missed approach and holding standards for aircraft operating along a published route with different navigational equipment. Some critical obstruction clearance standards are integrated into the approach/departure surfaces identified in Airport Design including many final approach segments and the 40:1 sloped departure surface. Other important obstacle clearance surfaces within the inner airport environment identified in TERPS include the precision obstacle clearance surfaces and the missed approach surfaces. Some TERPS surfaces may even be more restrictive than Part 77 standards. Penetrations to TERPS surfaces results in higher weather minimums or operational restrictions.

One Engine Inoperative (OEI) Surfaces

One Engine Inoperative (OEI) procedures are developed by air carriers to clear obstacles in situations where one engine becomes inoperative. OEI obstacle surfaces have shallow slopes to provide object clearance when aircraft climb performance is reduced as a result of engine power loss. OEI procedures are developed by each airline. Critical obstructions effect the utility of the runway by these aircraft. The FAA had required a clear 62.5:1 sloped surface to be kept clear of obstacles from departure ends. The 62.5:1 OEI surface is no longer required by FAA because of the large area covered, the scope of obstructions found and inability for airport sponsors to clear these areas. FAA is anticipated to publish new guidance by 2016. We recommend this surface be used for future runway, airspace and land use planning.

Other Design Surfaces

Other airport design airspace surfaces considered protect navigational aids and identify airport data to populate FAA databases.

INNER-APPROACH/ TRANSITIONAL OBSTACLE FREE ZONES

If an approach lighting system is installed, a clear inner-approach and inner-transitional Obstacle Free Zone (OFZ) is necessary. The inner-approach OFZ is a 50:1 sloped surface begins 200 feet from the runway threshold and extends 200 feet beyond the last approach light. The inner-transitional OFZ airspace surface is along the sides of the ROFZ. No objects not necessary for airport operations, including aircraft tails can penetrate this surface. For MOT, the inner-transitional OFZ begins at 44.8 feet for a Category I approach and extends upward and outward at a 6:1 slope. There are no current or projected issues which would create an obstruction to the inner-approach or inner-transitional OFZ.

PRECISION OBSTACLE FREE ZONE (POFZ)

If a precision instrument approach is in existence (visibility minimums < $\frac{3}{4}$ mile) there exists a POFZ which begins at the runway threshold as a flat surface 800 feet wide centered on the runway centerline and extending 200 feet to connect to the inner-approach OFZ. As with the OFZ, no above-ground objects not necessary for airport operations including aircraft or vehicles on the ground can penetrate this surface. For MOT, there are no current or projected issues which would create an obstruction within the POFZ of Runway 31 or Runway 13.

VISUAL AIDS

Visual aids at an airport require clear obstacle clearance surface to provide sufficient guidance for pilots. These include approach lighting systems and visual guidance slope indicators. For a Precision Approach Path Indicator (PAPI) system, this surface begins 300 feet in front of the VGSI system and extends upward and outward at an angle 1 degree less than the lowest on-course aiming angle. This equates to a 32:1 slope for a standard 3-degree PAPI. The specific airspace standards for this and for approach lighting systems are defined in [FAA Order 6850.2B](#).

FAA AERONAUTICAL SURVEYS

The FAA has implemented Aeronautical Survey requirements per [FAA Advisory Circular 150/5300-18B General Guidance and Specifications for Submission of Aeronautical Surveys to NGS: Field Data Collection and Geographic Information System \(GIS\) Standards](#). FAA airport survey requirements require obstruction data for specialized obstruction surfaces to be collected using assembled aerial imagery for the airport. Special obstruction surfaces are used for this effort to provide with FAA sufficient airport and obstacle information. This data is used in aeronautical publications and to develop instrument approach procedures.

This Master Plan project triggers a new aeronautical survey. When safety-critical data changes such as modification to runway ends or instrument approach procedures is proposed then a new aeronautical survey with an airspace analysis is required. Obstructions that have been removed can be deleted from the database by coordinating with FAA Flight Procedures Office. The next trigger for an aeronautical survey will be a change in instrument approach procedures.

Projects that change other airfield geometry require as-built data to be submitted to FAA to the standards outlined in the current version of [FAA Advisory Circular 150/5300-18](#).

The submittal for the Aeronautical Survey conducted as a part of this Airport Master Plan was submitted to the FAA through the FAA's AGIS system. The information submitted is in a Universal Data Delivery Format (UDDF) file located at nfdc.faa.gov/nfdcApps/services/publicData/uddflist.jsp. The contents of the UDDF file are found at the end of this appendix as **Figure L-19 2017 MOT UDDF Text**. Please note that the UDDF text does not include headings for information.

Published Instrument Procedures

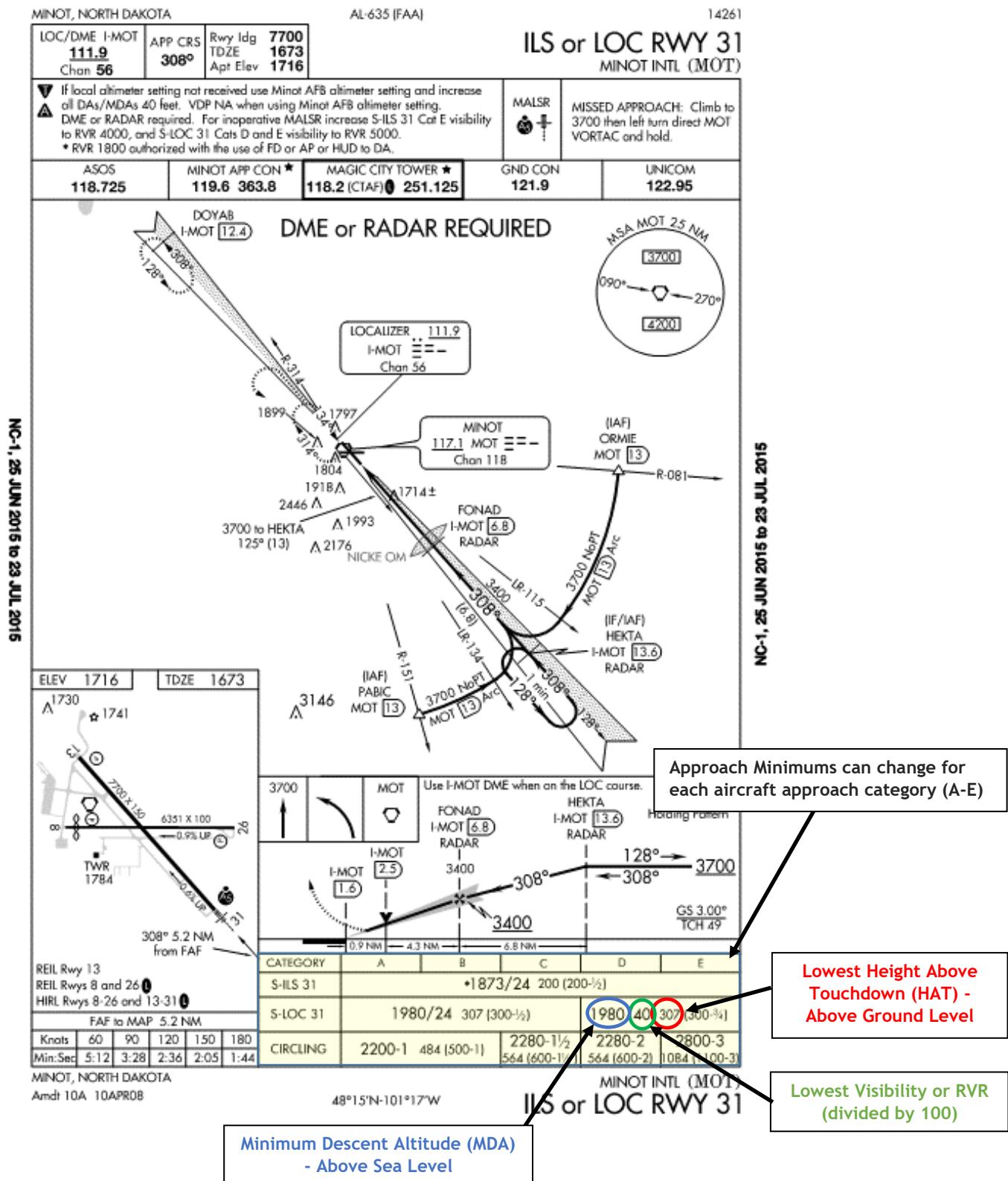

The following **Figures L-7 through L-18** and **Table L-10** contain all the published instrument procedures for MOT, including approach and departure procedures. **Figure L-7** which is ILS Runway 31, contains notations to understand key elements in the Instrument Approach Procedure. The ILS Runway 31 procedure is repeated without notations in **Figure L-8**.

Table L-10 - Instrument Approach Procedures & Airspace Summary

Type	Standard	Existing	Future	Ultimate
Published IAPs	-	RNAV (GPS) 08, 13, 26 & 31 ILS OR LOC 31 LOC/DME BC 13 VOR 08, 13, 26, 31	RNAV (GPS) 08, 13, 26 & 31 ILS OR LOC 31 VOR 08, 13, 26, 31	RNAV (GPS) 08, 13, 26 & 31 ILS OR LOC 31 VOR 08, 13, 26, 31
Airspace Classification	-	Class D	Class D	Class D
Part 77 Code	Same as Existing	RWY 13 - C RWY 31 - PIR RWY 8 - C RWY 26 - C	RWY 13 - D RWY 31 - PIR RWY 8 - C RWY 26 - C	RWY 13 - D RWY 31 - PIR RWY 8 - C RWY 26 - C
Part 77 Obstructions	-	YES	YES	YES
Approach Obstructions	NO	NO	NO	NO
Departure Obstructions	NO	YES	YES	YES
Other Obstructions	NO	NO	NO	NO

Source: [FAA Digital Terminal Procedure Publication](#), KLJ Analysis

Figure L-7 - ILS OR LOC RWY 31 Instrument Approach - With Notations

Figure L-9 - LOC / DME BC RWY 13 Instrument Approach

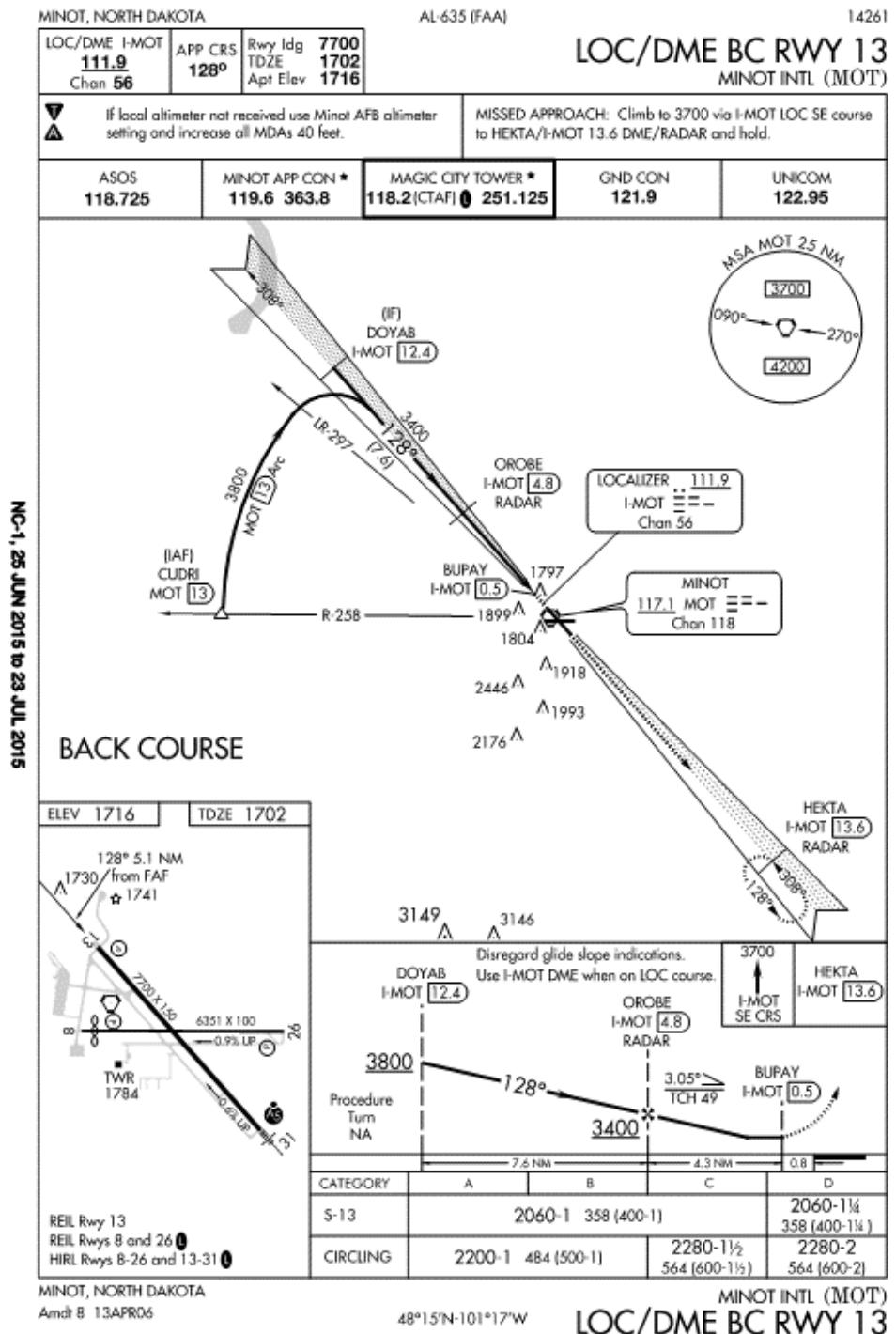


Figure L-10 - RNAV (GPS) RWY 31 Instrument Approach

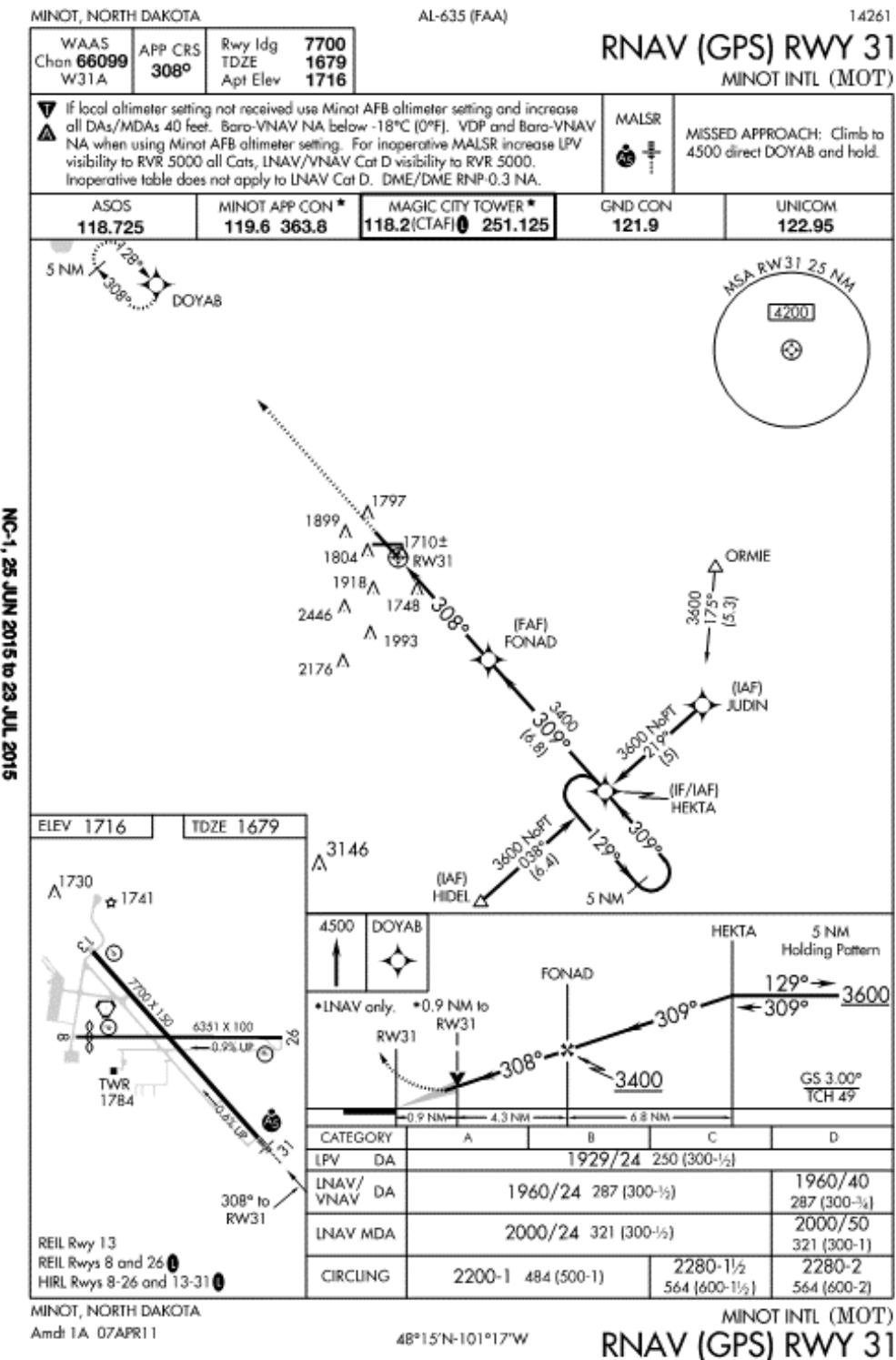
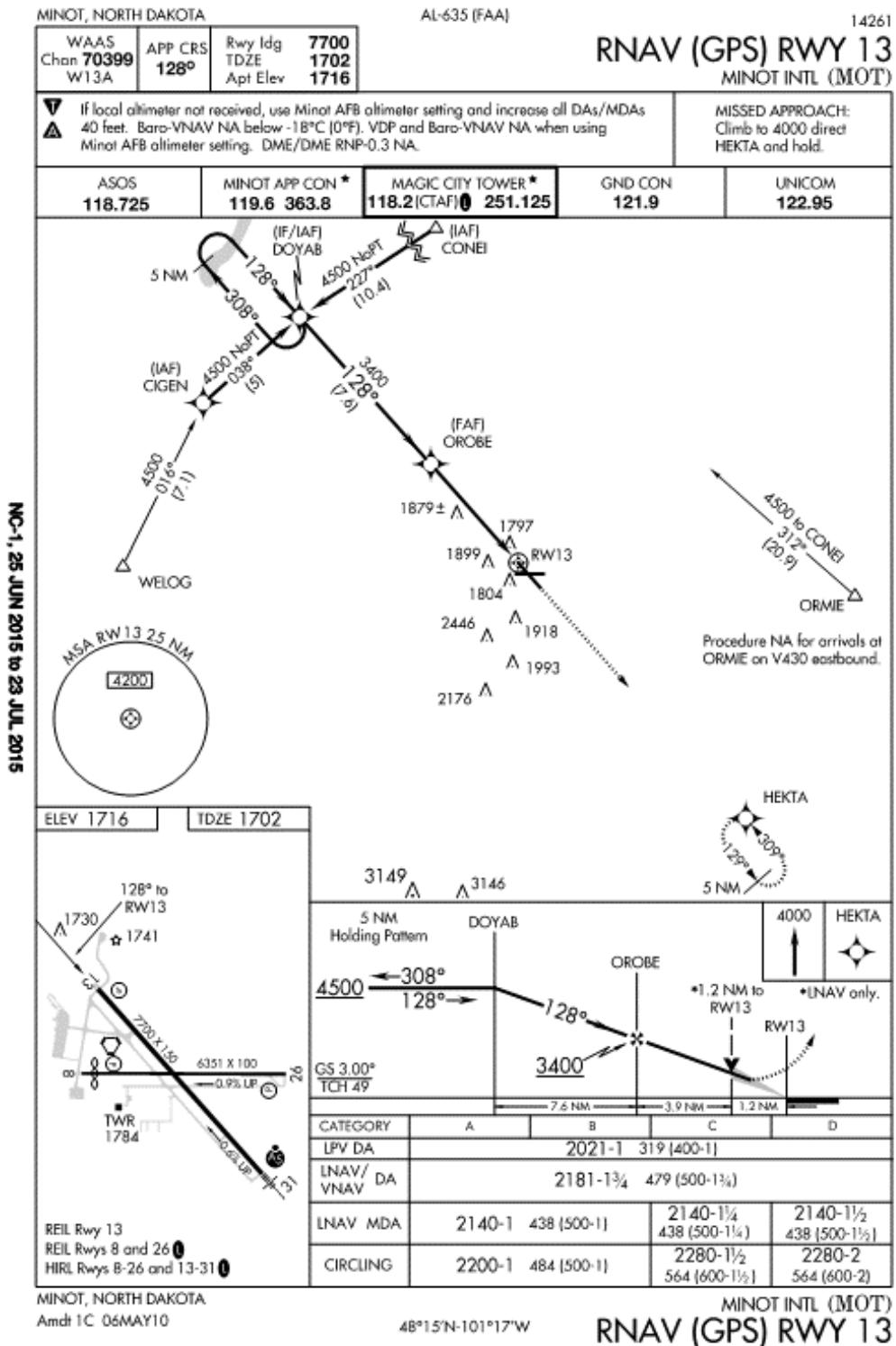
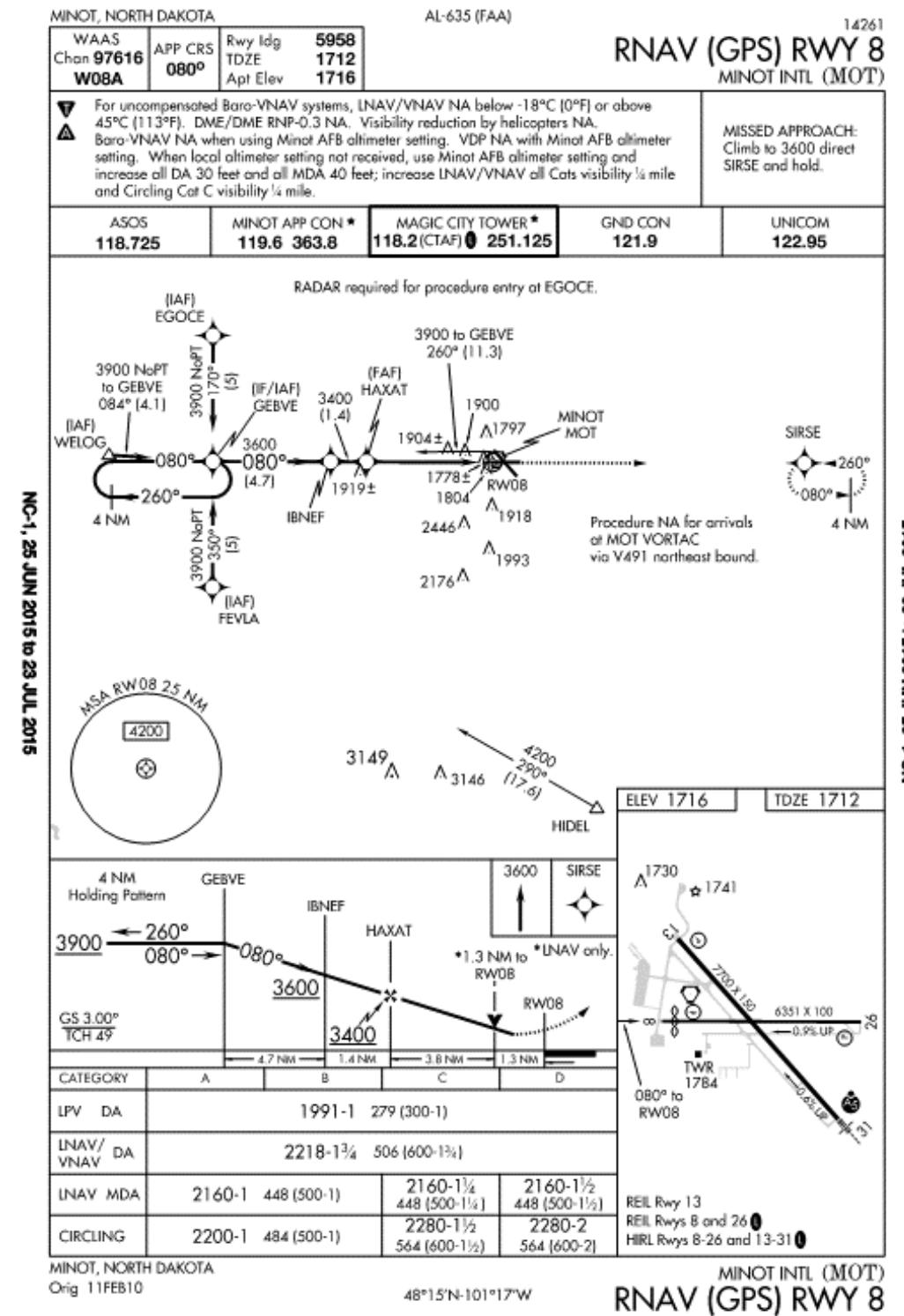




Figure L-11 - RNAV (GPS) RWY 13 Instrument Approach

Figure L-12 - RNAV (GPS) RWY 8 Instrument Approach

Figure L-13 - RNAV (GPS) RWY 26 Instrument Approach

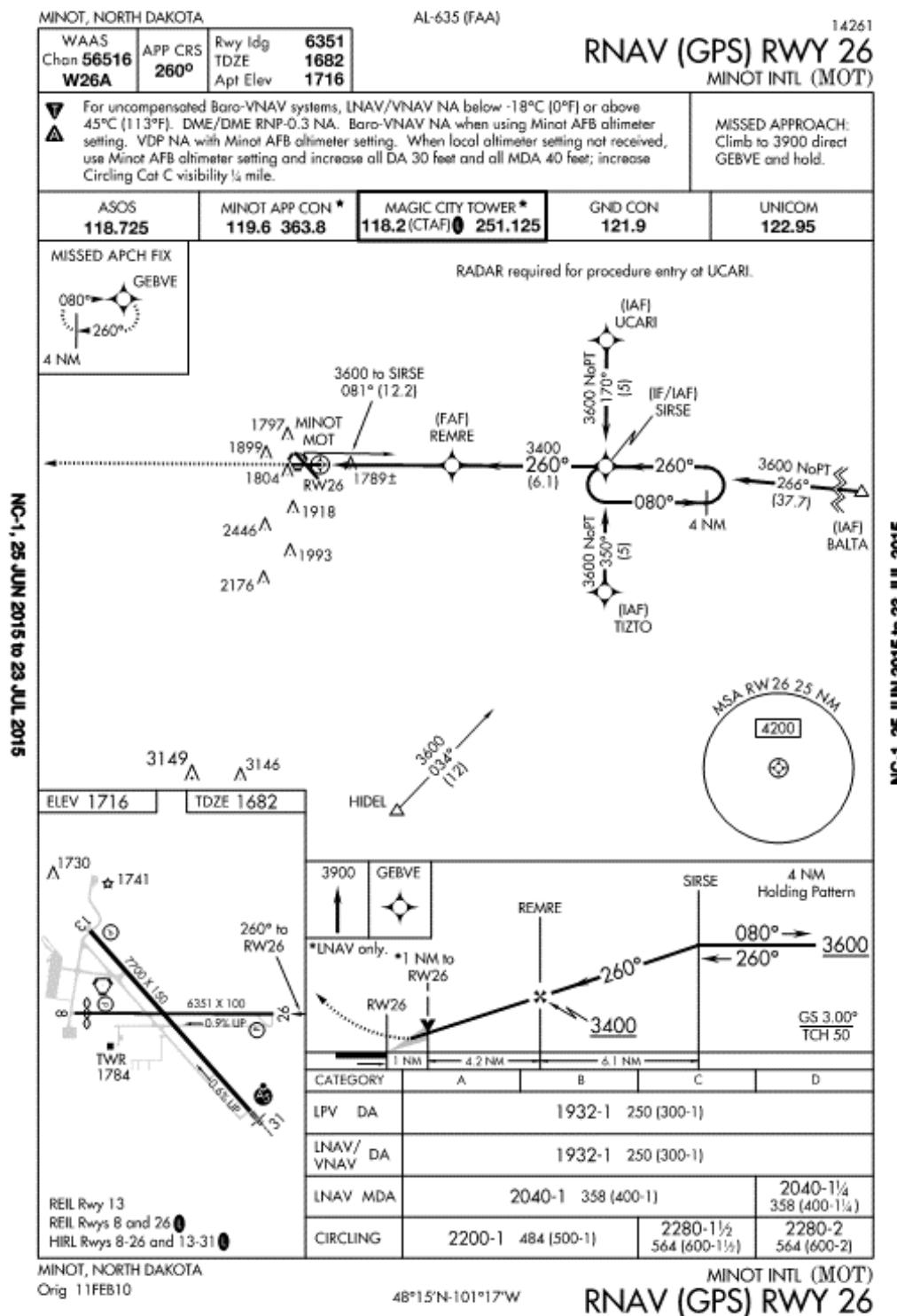


Figure L-14 - VOR RWY 31 Instrument Approach

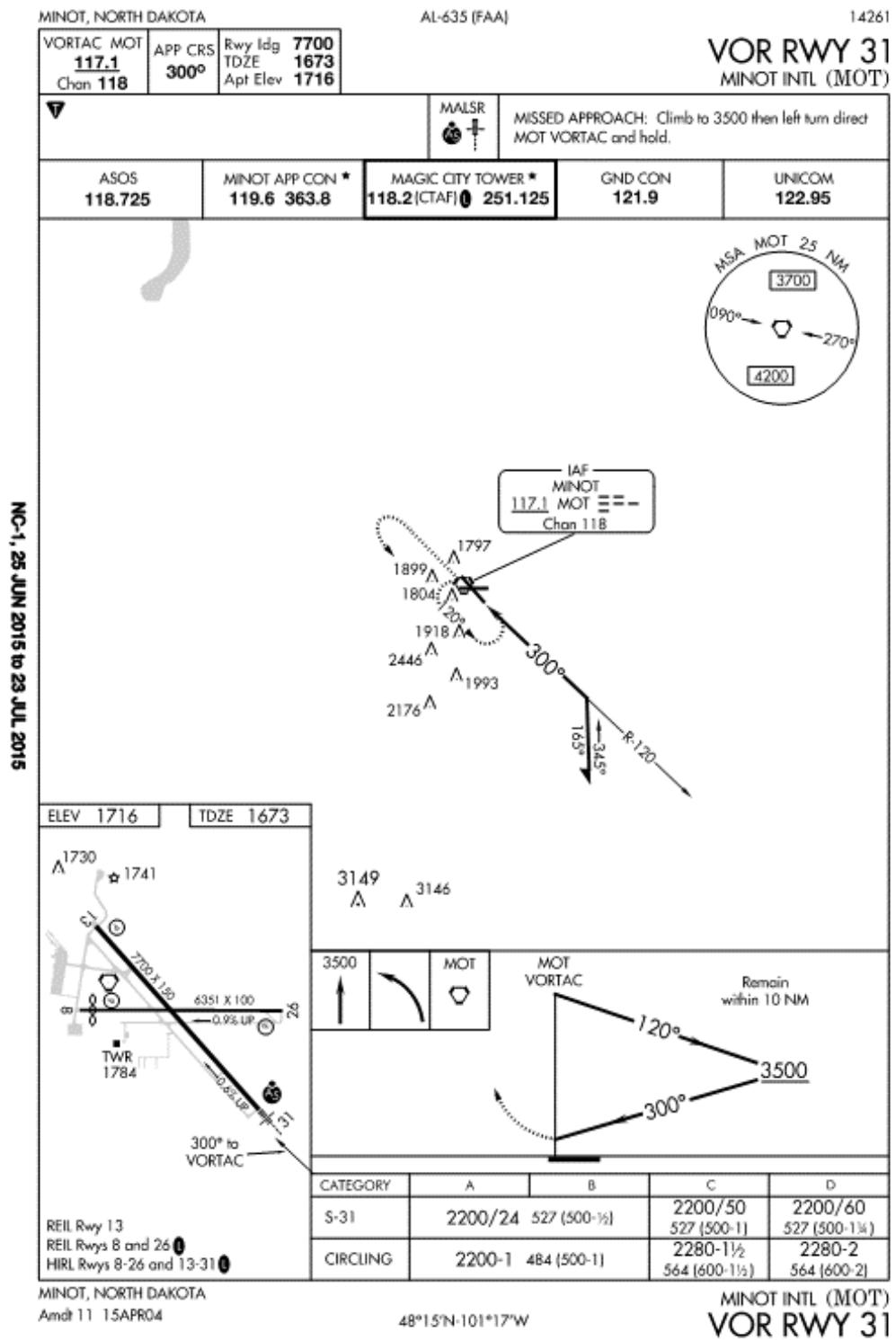


Figure L-15 - VOR RWY 13 Instrument Approach

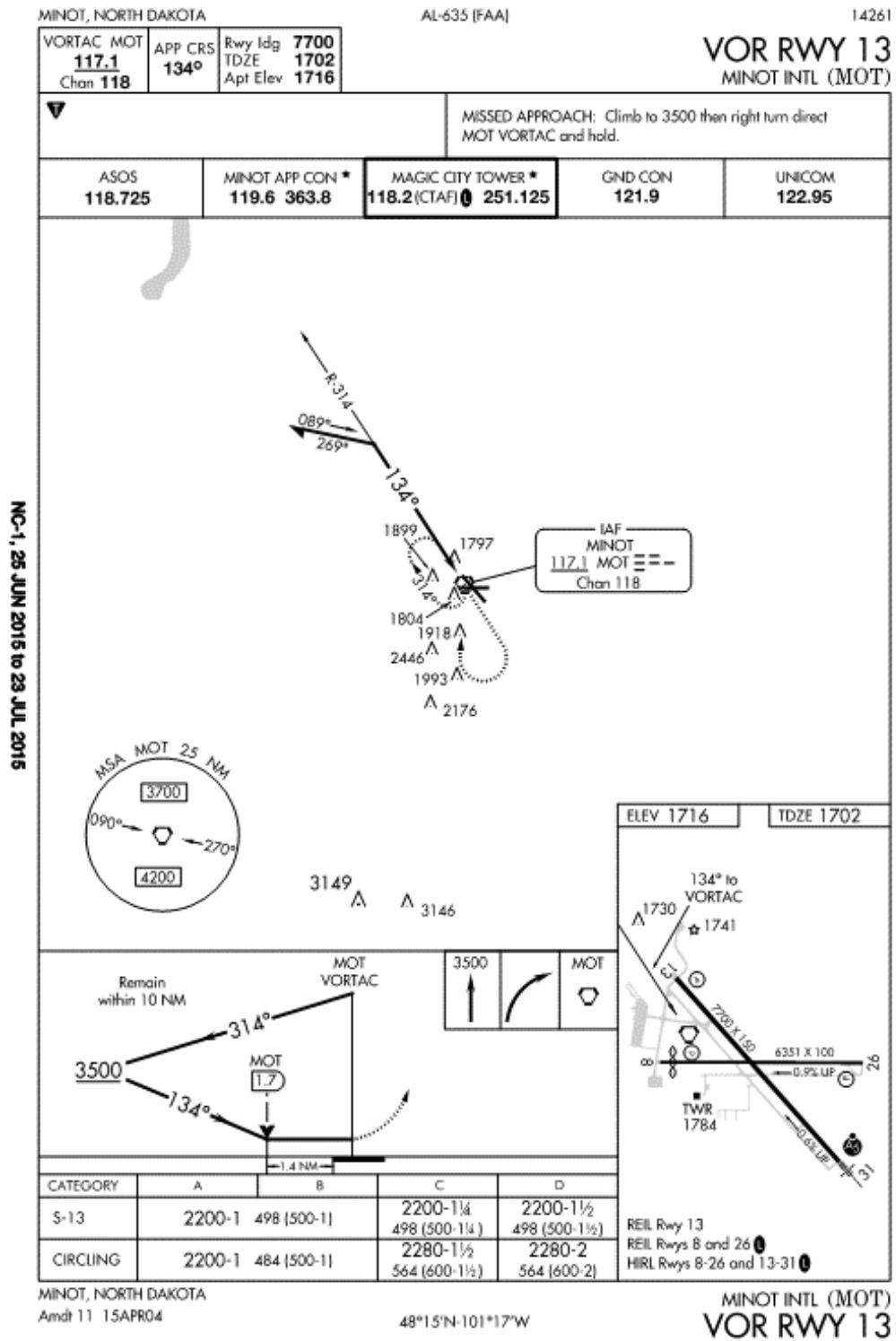


Figure L-16 - VOR RWY 8 Instrument Approach

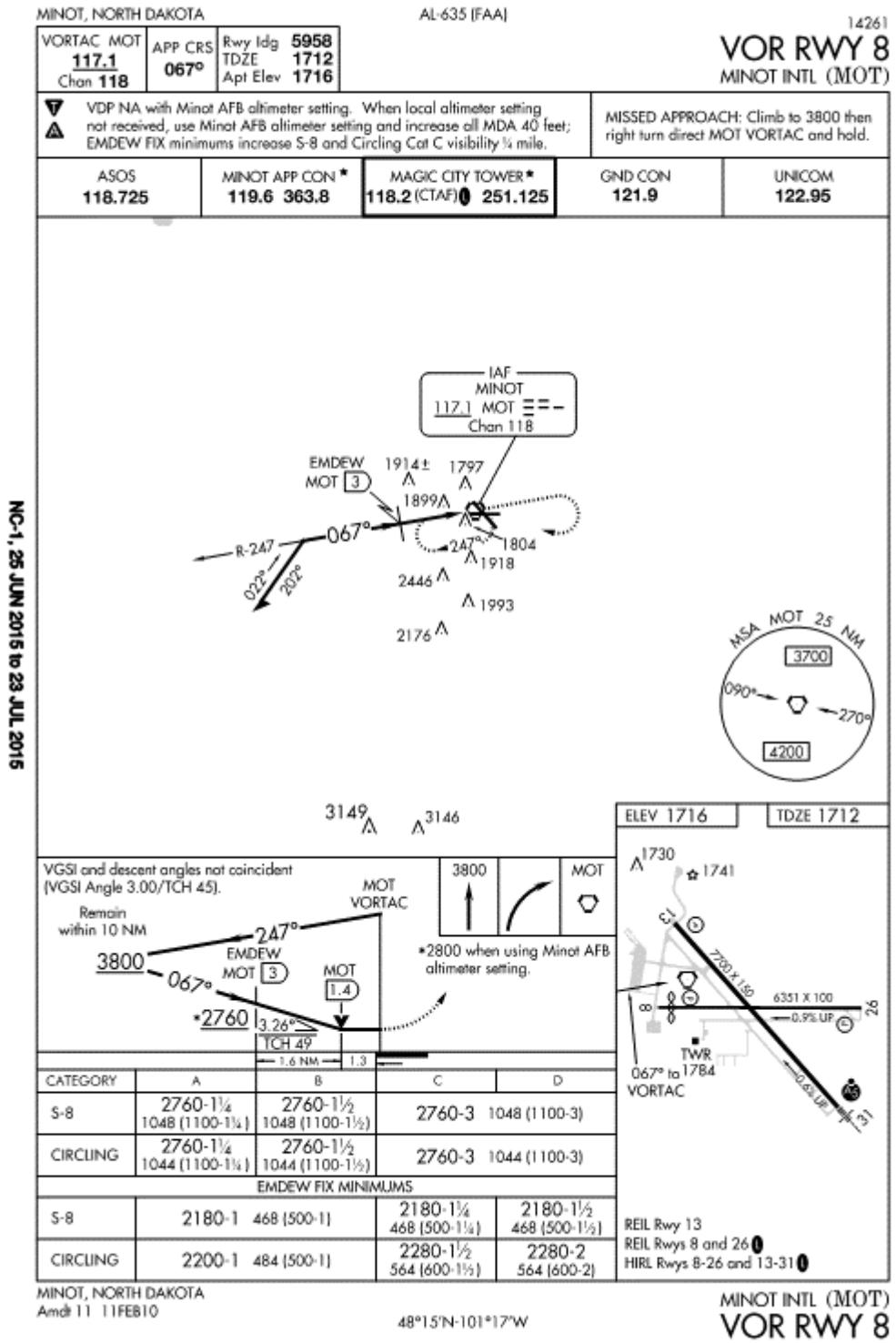
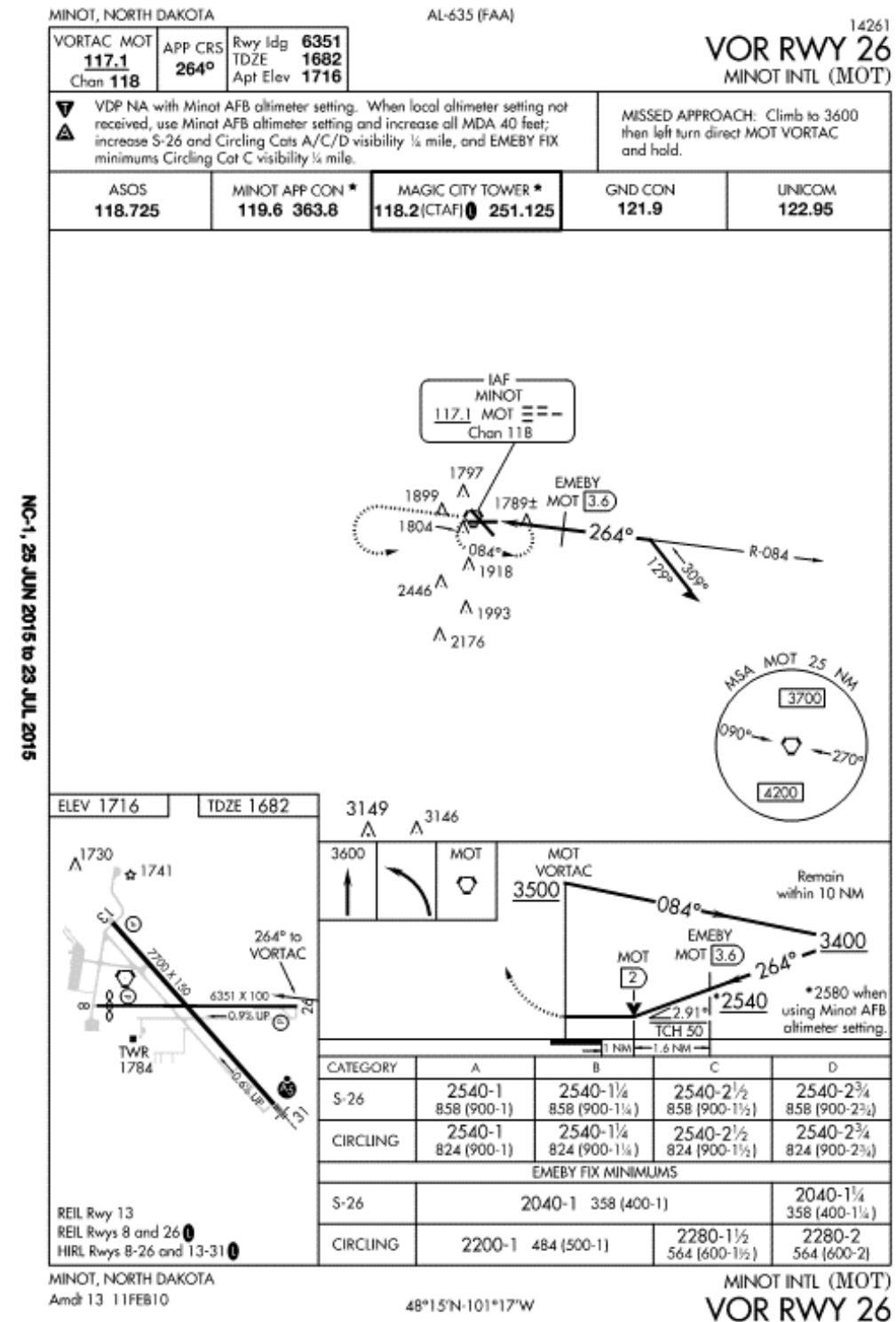



Figure L-17 - VOR RWY 26 Instrument Approach

Figure L-18 - Takeoff Minimums

L14

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

MINNEAPOLIS, MN (CON'T)

MINNEAPOLIS-ST. PAUL INTL / WOLD-CHAMBERLAIN (MSP)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 12 13122 (FAA)

TAKEOFF MINIMUMS: **Rwy 12L**, 300-1½ or std. w/min. climb of 207' per NM to 1100, or alternatively, with standard takeoff minimums and a normal 200' per NM climb gradient, takeoff must occur no later than 1300' prior to DER. **Rwy 35**, std. w/ min. climb of 219' per NM to 2100.

DEPARTURE PROCEDURE: **Rwy 4**, climb heading 045° to 2100 before turning left. **Rwys 30L,30R**, climb heading 301° to 2100 before turning right.

Rwy 35, climb heading 350° to 2100 before proceeding on course

NOTE: **Rwy 4**, trees beginning 800' from DER, 301' left of centerline, up to 75' AGL/925' MSL. Rod on building 2528' from DER, 1174' left of centerline, 78' AGL/922' MSL. Fence beginning 13' from DER, 486' left of centerline, up to 6' AGL/860' MSL. Stack 4535' from DER, 480' left of centerline, 139' AGL/949' MSL. **Rwy 12L**, tree 1.1 NM from DER, 1691' left of centerline, 92' AGL/991' MSL. Light pole and camera on wall beginning 398' from DER, 561' right of centerline, up to 23' AGL/832' MSL. **Rwy 12R**, tree 1479' from DER, 561' left of centerline, 86' AGL/855' MSL. Obstruction light on pole 1002' from DER, 753' left of centerline, 53' AGL/852' MSL. **Rwy 17**, pole 409' from DER, 530' right of centerline, 29' AGL/866' MSL. Building 2619' from DER, 881' left of centerline, 97' AGL/918' MSL. Building 1956' from DER, 904' left of centerline, 61' AGL/866' MSL. Tree 2619' from DER, on centerline, 79' AGL/900' MSL. **Rwy 22**, trees beginning 2659' from DER, 867' right of centerline, 94' AGL/934' MSL. **Rwy 30L**, antenna on tower 3555' from DER, 1334' left of centerline, 116' AGL/935' MSL. **Rwy 30R**, billboard sign 1463' from DER, 848' right of centerline, 31' AGL/880' MSL. **Rwy 35**, trees beginning 2553' from DER, 770' right of centerline, 100' AGL/919' MSL. Trees beginning 1989' from DER, 194' left of centerline, up to 87' AGL/906' MSL. Buildings beginning 5.4 NM from DER, 1781' left of centerline, up to 889' AGL/1743' MSL.

25 JUN 2015 to 23 JUL 2015

MINOT, ND

MINOT INTL (MOT)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 3A 11097 (FAA)

TAKEOFF MINIMUMS: **Rwy 26**, 300-1½ or std. with a min. climb of 219' per NM to 2000.

DEPARTURE PROCEDURE: **Rwy 13**, climb via heading 128° to 2200 before turning right. **Rwy 26**, climb via heading 260° to 2300 before turning left.

NOTE: **Rwy 8**, fence 261' from DER, 415' right of centerline, 9' AGL/1669' MSL. **Rwy 26**, poles beginning 952' from DER, 523' left of centerline, up to 42' AGL/1761' MSL. Tower 1297' from DER, 405' right of centerline, 29' AGL/1751' MSL. Sign 1372' from DER, 323' left of centerline, 31' AGL/1750' MSL. Sign 1377' from DER, 832' right of centerline, 59' AGL/1778' MSL. Light pole 1419' from DER, 24' right of centerline, 36' AGL/1752' MSL. Trees beginning 1463' from DER, 73' right of centerline, up to 76' AGL/1795' MSL. Building 1432' from DER, 303' right of centerline, 33' AGL/1753' MSL. Tree 2071' from DER, 60' left of centerline, 53' AGL/1772' MSL. Tank 1.1 NM from DER, 1812' right of centerline, 140' AGL/1900' MSL. **Rwy 31**, trees beginning 2908' from DER, 560' left of centerline, up to 64' AGL/1778' MSL.

MITCHELL, SD

MITCHELL MUNI (MHE)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 1 86240 (FAA)

DEPARTURE PROCEDURE: **Rwys 12, 17**, climb to 1800 before turning.

MOBRIDGE, SD

MOBRIDGE MUNI(MBG)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

AMDT 1 11181 (FAA)

TAKEOFF MINIMUMS: **Rwys 17,35,NA** - environmental
DEPARTURE PROCEDURE: **Rwy 12**, climb heading 118° to 2600 before turning left.

NOTE: **Rwy 12**, tower 2587' from DER, 651' right of centerline, 40' AGL/ 1810' MSL. Pole 3567' from DER, 12' right of centerline, 11' AGL/ 1790' MSL. Tree 1495' from DER, 230' right of centerline, 29' AGL/ 1738' MSL. Trees and poles beginning 1698' from DER, 160' left of centerline, up to 75' AGL/ 1811' MSL. Terrain and road beginning 153 from DER, 307' left of centerline, up to 17' AGL/1749' MSL. **Rwy 30**, terrain and road beginning 36' from DER, left to right across centerline, up to 17' AGL/1710' MSL.

MOHALL, ND

HOHALL MUNI (HBC)
TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

ORIG 11293 (FAA)

NOTE: **Rwy 13**, vehicles on roadway, 361' from DER, left and right of centerline, up to 15' AGL/1664' MSL.

25 JUN 2015 to 23 JUL 2015

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

NC-1

Exhibit L-19 - 2017 MOT UDDF Text

```

|MOT |17418.A |AGL |1.07|
|MINOT INTL
|MINOT |NORTH DAKOTA |0252016| | | |
|NAD83 |5 CM |15 CM |NAVD88 |25 CM | |
|-6.5|0252016|
| 1715.7| 1648.7|8+0 |0252016|
| 481527.5|-1011640.9|
@ |P|0252016|
| |
| 481528.9553|-1011726.8167| 901424| 6348|100|0252016|
| 1711.8| 1644.9|0252016|
| 481528.9391|-1011721.0524| 390|0252016|
| 0| 1715.7| 1648.7|0252016|
| 390| 1711.8| 1644.9|0252016|
| 2844| 1686.6| 1619.6|0252016|
| 3174| 1683.2| 1616.2|0252016|
| 5038| 1664.9| 1597.8|0252016|
| 6348| 1658.2| 1591.0|0252016|
# |P|0252016|
| |
| 481528.6812|-1011553.0194|2701538| 6348|100|0252016|
| 1681.8| 1614.7|0252016|
| 0| 1658.2| 1591.0|0252016|
| 1310| 1664.9| 1597.8|0252016|
| 3174| 1683.2| 1616.2|0252016|
| 3504| 1686.6| 1619.6|0252016|
| 5958| 1711.8| 1644.9|0252016|
| 6348| 1715.7| 1648.7|0252016|
# |P|0252016|
| |
| 481554.8994|-1011719.4618|1382303| 7700|150|0252016|
| 1701.8| 1634.8|0252016|
| 0| 1701.8| 1634.8|0252016|
| 2590| 1692.3| 1625.2|0252016|
| 3533| 1686.6| 1619.6|0252016|
| 3850| 1684.6| 1617.5|0252016|

```

```

| 5891| 1671.7| 1604.6|0252016|
| 7700| 1657.1| 1590.1|0252016|
# |31 |P|0252016|
| |
| 481458.0879|-1011603.9067|3182359| 7700|150|0252016|
| 1679.1| 1612.1|0252016|
| 0| 1657.1| 1590.1|0252016|
| 1809| 1671.7| 1604.6|0252016|
| 3850| 1684.6| 1617.5|0252016|
| 4167| 1686.6| 1619.6|0252016|
| 5110| 1692.3| 1625.2|0252016|
| 7700| 1701.8| 1634.8|0252016|
@ |DME (31_MOT) |481611.5853|-1011736.7392| 1722.1| 1655.1| | |0252016|
|GS_NR (31_MOT) |481506.7920|-1011607.5788| 1658.1| 1591.0| | |0252016| |
|GS_NR (31_MOT) PP |481504.1728|-1011611.9959| 1663.8| | |400R| 825|0252016|
|LOC (31_MOT) |481609.3762|-1011738.7092| 1711.7| 1644.7| | |1962|0252016|
|OM (31_MOT) |481120.9338|-1011115.6708| 1593.7| 1526.3| | |29418|0252016|
|OM (31_MOT) CLPT |481120.9187|-1011115.6962| 1657.1| | |2R| 29418|0252016|
|VOR/DME (MOT) |481537.2088|-1011713.4559| 1699.2| 1632.2| | |0252016|
# |ALS/MALSR (31) |481439.9959|-1011539.8702| 1633.6| 1566.5| | |0252016|
|ALS/MALSR (31) |481456.5320|-1011601.8446| 1655.4| 1588.3| | |0252016| |
|APBN |481609.7173|-1011711.1338| 1701.8| 1634.8| | |0252016|
|PAPI/PAPI4 (8) |481534.3448|-1011705.7123| 1698.7| 1631.7| | |0252016|
|PAPI/PAPI4 (8) PP |481528.8955|-1011705.7216| 1701.0| | |147L| 1038|0252016|
|PAPI/PAPI4 (13) |481548.6496|-1011707.7606| 1695.0| 1628.0| | |0252016|
|PAPI/PAPI4 (13) PP |481547.5270|-1011709.6533| 1698.1| | |171L| 999|0252016|
|PAPI/PAPI4 (26) |481527.2908|-1011606.0108| 1660.1| 1593.0| | |0252016|
|PAPI/PAPI4 (26) PP |481528.7204|-1011606.0012| 1661.8| | |145L| 879|0252016|
|REIL (8) |481527.7055|-1011721.0709| 1713.4| 1646.4| | |0252016|
|REIL (8) |481530.1723|-1011721.0644| 1713.1| 1646.1| | |0252016|
|REIL (13) |481556.1418|-1011718.1461| 1702.4| 1635.4| | |0252016|
|REIL (13) |481554.1751|-1011721.4616| 1702.3| 1635.3| | |0252016|
|REIL (26) |481529.9046|-1011552.4308| 1659.3| 1592.2| | |0252016|
|REIL (26) |481527.4526|-1011552.4453| 1659.4| 1592.2| | |0252016|
# |ASOS |481507.3153|-1011608.1409| 1657.7| 1590.6| | |0252016|
|WIND CONE |481539.8866|-1011721.9209| 1706.1| 1639.1| | |0252016|
|WIND CONE |481503.7943|-1011616.5301| 1658.9| 1591.9| | |0252016|

```


Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

WIND CONE	481526.2090 -1011607.7981 1659.1 1592.0		0252016
@			
8 VGA			
#			
26 VGA			
#			
13 VGA			
#			
31 VGA			
#			
ARP HCT			
TWY LT	481528.25 -1011646.22 1A 1689	2 -27	
TWY LT	481525.41 -1011645.61 1A 1687	2 -29	
TWY LT	481529.40 -1011634.55 1A 1681	3 -35	
TWY LT	481525.65 -1011647.54 1A 1690	3 -26	
TWY LT	481523.23 -1011644.23 1A 1687	3 -29	
GRD	481529.50 -1011648.15 1A 1688	-28	
TWY LT	481528.26 -1011649.15 1A 1690	2 -26	
TWY LT	481527.01 -1011649.35 1A 1690	2 -26	
GRD	481522.09 -1011644.25 1A 1685	-31	
SIGN	481523.31 -1011647.14 1A 1689	4 -27	
TWY LT	481521.39 -1011641.90 1A 1686	3 -30	
SIGN	481525.88 -1011650.58 1A 1691	4 -25	
TWY LT	481521.68 -1011646.07 1A 1690	2 -26	
SIGN	481529.82 -1011650.43 1A 1693	3 -23	
GRD	481523.68 -1011650.08 1A 1689	-27	
SIGN	481520.25 -1011642.99 1A 1685	3 -31	
TWY LT	481527.64 -1011652.07 1A 1692	2 -24	
TWY LT	481520.37 -1011645.25 1A 1689	3 -27	
TWY LT	481519.70 -1011639.61 1A 1683	2 -33	
GRD	481521.38 -1011648.37 1A 1691	-25	
TWY LT	481524.52 -1011651.86 1A 1692	2 -24	
TWY LT	481529.74 -1011652.86 1A 1694	3 -22	
TWY LT	481528.20 -1011653.38 1A 1693	2 -23	
TWY LT	481519.07 -1011640.68 1A 1683	2 -33	
GRD	481525.99 -1011653.91 1A 1688	-28	
TWY LT	481519.38 -1011646.08 1A 1690	3 -26	
GRD	481522.43 -1011652.09 1A 1693	-23	
GRD	481518.60 -1011643.68 1A 1689	-27	
GRD	481520.83 -1011650.21 1A 1692	-24	
SIGN	481527.77 -1011654.74 1A 1696	5 -20	
GRD	481523.90 -1011653.95 1A 1692	-24	

GRD	481519.21 -1011647.63 1A 1691	-25	
TWY LT	481530.92 -1011654.54 1A 1692	1 -24	
GRD	481528.35 -1011655.51 1A 1694	-22	
GRD	481517.84 -1011638.10 1A 1680	-36	
GRD	481529.41 -1011655.51 1A 1693	-23	
TWY LT	481525.32 -1011655.49 1A 1695	3 -21	
TWY LT	481517.88 -1011645.26 1A 1691	2 -25	
GRD	481526.74 -1011656.05 1A 1691	-25	
GRD	481519.30 -1011658.06 1A 1695	-21	
GRD	481521.16 -1011653.32 1A 1696	-20	
GRD	481517.01 -1011641.63 1A 1684	-32	
RWY LT	481528.28 -1011656.91 1A 1696	2 -20	
GRD	481522.80 -1011655.50 1A 1696	-20	
TWY LT	481529.47 -1011656.91 1A 1696	2 -20	
TREE	481537.97 -1011645.96 1A 1689	-27	
RWY LT	481535.59 -1011652.11 1A 1692	2 -24	
GRD	481528.25 -1011624.19 1A 1672	-44	
GRD	481517.92 -1011649.70 1A 1694	-22	
GRD	481519.08 -1011652.23 1A 1697	-19	
GRD	481516.18 -1011643.16 1A 1691	-25	
GRD	481521.16 -1011655.60 1A 1698	-18	
RWY LT	481528.18 -1011623.34 1A 1673	3 -43	
TWY LT	481524.53 -1011657.96 1A 1698	3 -18	
RWY LT	481529.37 -1011623.33 1A 1673	3 -43	
GRD	481515.58 -1011639.92 1A 1682	-34	
GRD	481536.41 -1011653.29 1A 1691	-25	
GRD	481515.92 -1011647.26 1A 1696	-20	
GRD	481523.08 -1011658.20 1A 1698	-18	
RWY LT	481528.29 -1011659.50 1A 1698	3 -18	
TWY LT	481515.37 -1011645.26 1A 1695	3 -21	
GRD	481519.25 -1011654.99 1A 1700	-16	
TWY LT	481529.47 -1011659.50 1A 1698	2 -18	
GRD	481526.64 -1011659.89 1A 1694	-22	
GRD	481535.69 -1011655.47 1A 1691	-25	
GRD	481521.28 -1011658.10 1A 1700	-16	
GRD	481514.38 -1011641.31 1A 1690	-26	
GRD	481517.43 -1011628.01 1A 1675	-41	
GRD	481516.45 -1011629.92 1A 1675	-41	
GRD	481531.51 -1011659.97 1A 1693	-23	
TWY LT	481524.54 -1011700.45 1A 1701	3 -15	
TREE	481532.82 -1011622.18 1A 1681	-35	
GRD	481513.99 -1011644.02 1A 1693	-23	

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

RWY LT	481515.96 -1011629.36 1A 1677		3 -39			0252016
GRD	481513.66 -1011638.36 1A 1686			-30		0252016
GRD	481523.34 -1011700.91 1A 1699			-17		0252016
RWY LT	481528.29 -1011702.18 1A 1700		2 -16			0252016
GRD	481519.26 -1011658.28 1A 1703			-13		0252016
RWY LT	481529.48 -1011702.09 1A 1700		3 -16			0252016
SIGN	481538.46 -1011654.89 1A 1695		5 -21			0252016
GRD	481521.47 -1011701.08 1A 1702			-14		0252016
GRD	481530.97 -1011702.49 1A 1696			-20		0252016
TWY LT	481524.55 -1011702.93 1A 1703		3 -13			0252016
GRD	481512.43 -1011639.55 1A 1692			-24		0252016
GRD	481512.04 -1011642.17 1A 1693			-23		0252016
POLE	481516.27 -1011657.43 1A 1741	35	25			0252016
GRD	481519.39 -1011701.24 1A 1704			-12		0252016
GRD	481511.89 -1011636.34 1A 1683			-33		0252016
GRD	481523.39 -1011704.04 1A 1702			-14		0252016
TWY LT	481525.34 -1011704.65 1A 1704		2 -12			0252016
GRD	481532.62 -1011703.67 1A 1694			-22		0252016
GRD	481521.49 -1011704.15 1A 1704			-12		0252016
PAPI	481529.90 -1011705.72 1A 1702	4	-14			0252016
GRD	481510.74 -1011630.88 1A 1695			-21		0252016
GRD	481510.80 -1011637.44 1A 1694			-22		0252016
EQUIP	481531.37 -1011705.69 1A 1703		6 -13			0252016
GRD	481519.29 -1011703.64 1A 1712		5 -4			0252016
TWY LT	481524.44 -1011706.44 1A 1706		3 -10			0252016
FENCE	481525.52 -1011707.05 1A 1712		9 -4			0252016
GRD	481534.01 -1011705.49 1A 1695			-21		0252016
FENCE	481523.74 -1011706.92 1A 1710		7 -6			0252016
GRD	481510.12 -1011635.23 1A 1686			-30		0252016
GRD	481533.15 -1011707.18 1A 1697			-19		0252016
FENCE	481521.66 -1011707.18 1A 1714		8 -2			0252016
GRD	481508.98 -1011637.88 1A 1695			-21		0252016
GRD	481525.87 -1011709.07 1A 1704			-12		0252016
BLDG	481519.46 -1011706.51 1A 1731	22	15			0252016
GRD	481523.48 -1011709.07 1A 1709			-7		0252016
GRD	481532.26 -1011708.98 1A 1699			-17		0252016
GRD	481535.50 -1011707.65 1A 1695			-21		0252016
GRD	481508.46 -1011633.70 1A 1684			-32		0252016
GRD	481521.30 -1011709.12 1A 1711			-5		0252016
TWY LT	481525.36 -1011710.47 1A 1709	2	-7			0252016
GRD	481534.75 -1011709.15 1A 1698			-18		0252016
GRD	481507.48 -1011635.61 1A 1687			-29		0252016

GRD	481523.48 -1011711.13 1A 1710			-6		0252016
TREE	481519.29 -1011709.28 1A 1741			25		0252016
GRD	481533.98 -1011710.98 1A 1699			-17		0252016
GRD	481521.71 -1011711.47 1A 1712			-4		0252016
GRD	481536.84 -1011709.62 1A 1696			-20		0252016
CONTROL TWR	481518.87 -1011710.27 1A 1782	72	66			0252016
TWY LT	481525.37 -1011713.04 1A 1710	3	-6			0252016
GRD	481520.23 -1011711.69 1A 1713			-3		0252016
GRD	481506.63 -1011631.36 1A 1679			-37		0252016
GRD	481536.10 -1011711.26 1A 1698			-18		0252016
GRD	481523.54 -1011713.46 1A 1711			-5		0252016
GRD	481505.69 -1011633.37 1A 1687			-29		0252016
GRD	481521.74 -1011713.72 1A 1713			-3		0252016
TREE	481549.84 -1011634.09 1A 1732			16		0252016
GRD	481535.37 -1011713.08 1A 1700			-16		0252016
GRD	481538.14 -1011609.94 1A 1672			-44		0252016
FENCE	481541.96 -1011613.39 1A 1679	8	-37			0252016
BLDG	481519.67 -1011713.98 1A 1758	44	42			0252016
GRD	481538.40 -1011712.09 1A 1697			-19		0252016
VOR/DME	481537.20 -1011713.44 1A 1737	39	21			0252016
TWY LT	481525.23 -1011716.38 1A 1712	2	-4			0252016
GRD	481521.28 -1011606.34 1A 1667			-49		0252016
GRD	481523.65 -1011716.24 1A 1713			-3		0252016
GRD	481504.36 -1011631.52 1A 1673			-43		0252016
GRD	481522.14 -1011716.94 1A 1714			-2		0252016
GRD	481519.26 -1011605.96 1A 1668			-48		0252016
GRD	481522.14 -1011604.20 1A 1667			-49		0252016
TWY LT	481524.97 -1011718.39 1A 1714	3	-2			0252016
BLDG	481520.81 -1011717.31 1A 1767	51	51			0252016
GRD	481539.15 -1011714.49 1A 1699			-17		0252016
GRD	481520.42 -1011604.35 1A 1672			-44		0252016
GRD	481503.19 -1011629.58 1A 1671			-45		0252016
GRD	481537.76 -1011715.97 1A 1701			-15		0252016
GRD	481523.80 -1011719.19 1A 1714			-2		0252016
GRD	481523.24 -1011602.70 1A 1667			-49		0252016
BLDG	481519.40 -1011717.76 1A 1743	27	27			0252016
TWY LT	481540.66 -1011714.52 1A 1699	3	-17			0252016
GRD	481522.48 -1011719.80 1A 1715			-1		0252016
GRD	481518.85 -1011603.38 1A 1679			-37		0252016
GRD	481521.20 -1011602.04 1A 1668			-48		0252016
ANT	481506.93 -1011706.47 1A 1778	64	62			0252016
TWY LT	481524.73 -1011720.87 1A 1716	2	0			0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

BLDG	481521.29 -1011720.34 1A 1759	43	43			0252016
GRD	481501.62 -1011627.83 1A 1671		-45			0252016
GRD	481539.40 -1011717.90 1A 1702		-14			0252016
TWY LT	481540.98 -1011716.78 1A 1701	3	-15			0252016
GRD	481523.76 -1011721.89 1A 1716		0			0252016
GRD	481522.51 -1011559.93 1A 1669		-47			0252016
GRD	481522.32 -1011722.11 1A 1716		0			0252016
GRD	481519.47 -1011600.72 1A 1672		-44			0252016
BLDG	481519.86 -1011721.54 1A 1738	22	22			0252016
GRD	481543.82 -1011716.33 1A 1698		-18			0252016
FENCE	481525.04 -1011723.22 1A 1721	8	5			0252016
GRD	481520.68 -1011559.13 1A 1667		-49			0252016
GRD	481500.46 -1011626.26 1A 1669		-47			0252016
TWY LT	481541.13 -1011719.09 1A 1702	2	-14			0252016
FENCE	481524.99 -1011724.14 1A 1724	9	8			0252016
FENCE	481523.91 -1011724.21 1A 1725		8	9		0252016
SIGN	481542.58 -1011718.67 1A 1703	4	-13			0252016
FENCE	481522.32 -1011724.22 1A 1726	8	10			0252016
GRD	481522.23 -1011557.30 1A 1665		-51			0252016
FENCE	481520.83 -1011724.19 1A 1725	8	9			0252016
GRD	481519.01 -1011557.60 1A 1668		-48			0252016
GRD	481544.74 -1011718.09 1A 1701		-15			0252016
ANT	481506.81 -1011607.60 1A 1690	33	-26			0252016
GRD	481459.07 -1011624.39 1A 1667		-49			0252016
SIGN	481529.98 -1011726.58 1A 1717	4	1			0252016
GRD	481519.35 -1011724.99 1A 1721		5			0252016
GRD	481529.49 -1011726.72 1A 1715		-1			0252016
GRD	481520.76 -1011556.06 1A 1663		-53			0252016
TWY LT	481542.33 -1011721.26 1A 1705	3	-11			0252016
GRD	481525.17 -1011726.84 1A 1716		0			0252016
GRD	481523.72 -1011727.01 1A 1719		3			0252016
POLE	481520.98 -1011726.58 1A 1792	72	76			0252016
GRD	481543.93 -1011720.56 1A 1702		-14			0252016
GRD	481522.20 -1011726.91 1A 1719		3			0252016
GRD	481522.23 -1011554.60 1A 1660		-56			0252016
GRD	481534.39 -1011726.73 1A 1713		-3			0252016
TREE	481519.59 -1011726.74 1A 1753		37			0252016
GRD	481519.16 -1011554.96 1A 1664		-52			0252016
RWY LT	481525.66 -1011728.57 1A 1719	2	3			0252016
GRD	481528.95 -1011728.64 1A 1717		1			0252016
RWY LT	481528.39 -1011552.88 1A 1660	3	-56			0252016
RWY LT	481528.98 -1011552.88 1A 1660	3	-56			0252016

GRD	481546.58 -1011719.79 1A 1700		-16			0252016
GRD	481457.71 -1011622.58 1A 1665		-51			0252016
TWY LT	481533.97 -1011728.14 1A 1715	3	-1			0252016
TREE	481507.47 -1011603.11 1A 1666		-50			0252016
GRD	481520.77 -1011553.60 1A 1662		-54			0252016
POLE	481520.99 -1011728.27 1A 1793	73	77			0252016
RWY LT	481529.41 -1011729.24 1A 1718	2	2			0252016
REIL	481527.36 -1011552.45 1A 1660	3	-56			0252016
REIL	481527.46 -1011552.45 1A 1659		3	-57		0252016
RWY LT	481528.98 -1011729.36 1A 1719	3	3			0252016
REIL	481529.98 -1011552.43 1A 1659	5	-57			0252016
RWY LT	481527.86 -1011729.61 1A 1719	2	3			0252016
GRD	481524.24 -1011729.49 1A 1719		3			0252016
GRD	481534.07 -1011552.89 1A 1657		-59			0252016
GRD	481523.01 -1011552.30 1A 1661		-55			0252016
GRD	481522.16 -1011729.34 1A 1720		4			0252016
SIGN	481543.94 -1011723.43 1A 1709	4	-7			0252016
GRD	481519.18 -1011552.98 1A 1664		-52			0252016
FLGPL	481518.76 -1011729.00 1A 1760	37	44			0252016
BLDG	481520.28 -1011729.57 1A 1773	50	57			0252016
GRD	481545.57 -1011722.81 1A 1704		-12			0252016
POLE	481521.00 -1011729.94 1A 1792	73	76			0252016
GRD	481522.08 -1011551.24 1A 1661		-55			0252016
GRD	481520.86 -1011551.19 1A 1660		-56			0252016
GRD	481523.77 -1011550.51 1A 1661		-55			0252016
GRD	481544.29 -1011724.94 1A 1707		-9			0252016
POLE	481518.76 -1011730.09 1A 1764	40	48			0252016
GRD	481456.31 -1011620.64 1A 1663		-53			0252016
GRD	481547.46 -1011722.32 1A 1703		-13			0252016
GRD	481519.12 -1011550.83 1A 1661		-55			0252016
POLE	481520.99 -1011731.68 1A 1792	73	76			0252016
TWY LT	481545.30 -1011725.42 1A 1708	3	-8			0252016
FENCE	481522.51 -1011549.18 1A 1668	8	-48			0252016
FENCE	481521.38 -1011549.18 1A 1669	8	-47			0252016
TWY LT	481549.19 -1011722.26 1A 1704	3	-12			0252016
BUSH	481554.97 -1011713.72 1A 1701		-15			0252016
FENCE	481520.28 -1011549.19 1A 1669	9	-47			0252016
TWY LT	481547.11 -1011724.97 1A 1706	3	-10			0252016
FENCE	481519.15 -1011549.19 1A 1670	8	-46			0252016
GRD	481455.16 -1011618.66 1A 1665		-51			0252016
SIGN	481554.22 -1011716.19 1A 1702	3	-14			0252016
SIGN	481552.70 -1011718.95 1A 1703	3	-13			0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

FENCE	481518.09 -1011549.18 1A 1670	9	-46				0252016
TWY LT	481548.71 -1011724.59 1A 1706	3	-10				0252016
FENCE	481451.09 -1011639.25 1A 1705	8	-11				0252016
GRD	481550.57 -1011723.43 1A 1702		-14				0252016
GRD	481546.98 -1011727.94 1A 1703		-13				0252016
TWY LT	481550.63 -1011724.13 1A 1704	2	-12				0252016
RWY LT	481555.30 -1011718.90 1A 1703	2	-13				0252016
RWY LT	481554.57 -1011720.12 1A 1703	2	-13				0252016
GRD	481558.20 -1011713.82 1A 1698		-18				0252016
REIL	481556.14 -1011718.15 1A 1702	2	-14				0252016
REIL	481554.17 -1011721.46 1A 1702	3	-14				0252016
TREE	481449.17 -1011637.36 1A 1730		14				0252016
RWY LT	481458.41 -1011603.25 1A 1658	2	-58				0252016
RWY LT	481457.69 -1011604.47 1A 1658	2	-58				0252016
TREE	481449.14 -1011635.93 1A 1727		11				0252016
TREE	481449.90 -1011627.42 1A 1728		12				0252016
GRD	481548.55 -1011729.58 1A 1703		-13				0252016
GRD	481504.52 -1011552.92 1A 1658		-58				0252016
TWY LT	481600.02 -1011714.58 1A 1701	2	-15				0252016
TREE	481500.78 -1011724.97 1A 1763		47				0252016
GRD	481550.29 -1011729.80 1A 1703		-13				0252016
GRD	481549.25 -1011730.94 1A 1704		-12				0252016
TREE	481451.20 -1011613.49 1A 1674		-42				0252016
GRD	481501.88 -1011553.27 1A 1661		-55				0252016
GRD	481503.85 -1011550.99 1A 1663		-53				0252016
GRD	481549.81 -1011732.34 1A 1707		-9				0252016
GRD	481503.19 -1011551.03 1A 1661		-55				0252016
TREE	481449.97 -1011613.45 1A 1679		-37				0252016
POLE	481527.58 -1011744.29 1A 1740	20	24				0252016
POLE	481528.46 -1011744.28 1A 1741	21	25				0252016
POLE	481526.69 -1011744.29 1A 1740	21	24				0252016
POLE	481529.35 -1011744.28 1A 1741	20	25				0252016
RD (N)	481528.04 -1011744.37 1A 1735		19				0252016
POLE	481530.25 -1011744.28 1A 1742	21	26				0252016
POLE	481531.16 -1011744.21 1A 1741	21	25				0252016
RD (N)	481529.78 -1011744.38 1A 1735		19				0252016
RD (N)	481528.71 -1011744.46 1A 1735		19				0252016
RD (N)	481530.77 -1011744.37 1A 1736		20				0252016
RD (N)	481531.74 -1011744.34 1A 1736		20				0252016
TREE	481448.93 -1011612.99 1A 1685		-31				0252016
POLE	481528.01 -1011745.39 1A 1741	21	25				0252016
POLE	481528.91 -1011745.39 1A 1741	20	25				0252016

POLE	481526.25 -1011745.58 1A 1740	20	24				0252016
POLE	481529.79 -1011745.54 1A 1741	21	25				0252016
POLE	481530.68 -1011745.63 1A 1741	20	25				0252016
POLE	481531.57 -1011745.64 1A 1740	20	24				0252016
BLDG	481551.02 -1011736.62 1A 1733	24	17				0252016
SIGN	481526.84 -1011747.16 1A 1742	21	26				0252016
SIGN	481528.09 -1011747.17 1A 1741	20	25				0252016
SIGN	481531.01 -1011747.18 1A 1742	20	26				0252016
POLE	481528.61 -1011747.38 1A 1748	27	32				0252016
TREE	481447.44 -1011611.84 1A 1671		-45				0252016
POLE	481529.59 -1011747.50 1A 1748	27	32				0252016
BLDG	481531.39 -1011747.55 1A 1742	19	26				0252016
POLE	481531.54 -1011747.95 1A 1747	24	31				0252016
TREE	481530.95 -1011748.25 1A 1751		35				0252016
BLDG	481529.07 -1011748.69 1A 1753	32	37				0252016
POLE	481529.59 -1011748.89 1A 1749	29	33				0252016
POLE	481527.47 -1011749.03 1A 1750	29	34				0252016
POLE	481526.98 -1011749.03 1A 1749	28	33				0252016
TREE	481530.93 -1011749.60 1A 1751		35				0252016
POLE	481529.74 -1011749.97 1A 1748	28	32				0252016
TREE	481530.99 -1011749.86 1A 1750		34				0252016
POLE	481531.54 -1011749.96 1A 1746	24	30				0252016
BLDG	481527.77 -1011750.58 1A 1742	20	26				0252016
POLE	481528.65 -1011750.87 1A 1748	28	32				0252016
POLE	481529.26 -1011750.89 1A 1748	28	32				0252016
ANT	481689.71 -1011711.14 1A 1740	38	24				0252016
POLE	481527.78 -1011751.27 1A 1751	30	35				0252016
POLE	481526.21 -1011751.25 1A 1756	36	40				0252016
POLE	481528.81 -1011751.26 1A 1756	36	40				0252016
POLE	481529.81 -1011751.29 1A 1750	30	34				0252016
POLE	481530.52 -1011751.27 1A 1754	33	38				0252016
POLE	481531.53 -1011751.25 1A 1755	33	39				0252016
TREE	481532.01 -1011752.08 1A 1756		40				0252016
TREE	481521.92 -1011752.02 1A 1776		60				0252016
TREE	481520.29 -1011751.78 1A 1764		48				0252016
TREE	481526.04 -1011752.96 1A 1745		29				0252016
TREE	481531.50 -1011753.03 1A 1772		56				0252016
TREE	481530.64 -1011753.17 1A 1763		47				0252016
TREE	481530.93 -1011753.28 1A 1769		53				0252016
TREE	481531.82 -1011753.12 1A 1773		57				0252016
TREE	481517.31 -1011751.99 1A 1781		65				0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

TREE	481522.81 -1011753.32 1A 1763			47			0252016
TREE	481526.01 -1011753.63 1A 1745			29			0252016
TREE	481526.00 -1011753.91 1A 1747			31			0252016
TREE	481531.92 -1011753.73 1A 1769			53			0252016
TREE	481530.57 -1011753.97 1A 1757			41			0252016
TREE	481521.74 -1011753.67 1A 1771			55			0252016
POLE	481527.63 -1011754.28 1A 1750	28		34			0252016
TREE	481520.75 -1011753.59 1A 1772			56			0252016
POLE	481528.98 -1011754.28 1A 1753			31	37		0252016
POLE	481526.65 -1011754.30 1A 1751			30	35		0252016
POLE	481529.81 -1011754.26 1A 1751			30	35		0252016
TREE	481531.70 -1011754.46 1A 1766			50			0252016
TREE	481530.72 -1011754.58 1A 1759			43			0252016
TREE	481531.45 -1011754.62 1A 1761			45			0252016
TREE	481532.01 -1011754.57 1A 1759			43			0252016
TREE	481530.56 -1011755.08 1A 1754			38			0252016
TREE	481531.50 -1011755.10 1A 1752			36			0252016
TREE	481518.18 -1011754.48 1A 1770			54			0252016
TREE	481530.95 -1011755.66 1A 1763			47			0252016
TREE	481530.45 -1011755.88 1A 1758			42			0252016
TREE	481514.88 -1011753.61 1A 1765			49			0252016
TREE	481528.69 -1011756.26 1A 1757			41			0252016
TREE	481530.61 -1011756.19 1A 1760			44			0252016
POLE	481555.17 -1011743.97 1A 1753	37		37			0252016
TREE	481531.99 -1011756.14 1A 1758			42			0252016
TREE	481531.14 -1011756.28 1A 1770			54			0252016
TREE	481529.17 -1011756.49 1A 1762			46			0252016
TREE	481529.50 -1011756.54 1A 1768			52			0252016
TREE	481532.04 -1011756.29 1A 1758			42			0252016
TREE	481528.93 -1011756.74 1A 1763			47			0252016
TREE	481520.39 -1011756.04 1A 1780			64			0252016
POLE	481526.46 -1011756.80 1A 1750	28		34			0252016
TREE	481528.68 -1011756.88 1A 1771			55			0252016
TREE	481531.14 -1011756.76 1A 1754			38			0252016
TREE	481530.97 -1011756.82 1A 1751			35			0252016
TREE	481532.15 -1011756.71 1A 1753			37			0252016
TREE	481516.07 -1011755.37 1A 1775			59			0252016
TREE	481530.59 -1011757.23 1A 1755			39			0252016
TREE	481531.56 -1011757.23 1A 1761			45			0252016
POLE	481556.57 -1011743.96 1A 1754	39		38			0252016
TREE	481528.79 -1011757.52 1A 1760			44			0252016
TREE	481529.51 -1011757.49 1A 1762			46			0252016

POLE	481530.57 -1011757.56 1A 1751		29	35			0252016
TREE	481525.89 -1011757.78 1A 1761			45			0252016
POLE	481532.04 -1011757.56 1A 1751	28		35			0252016
TREE	481529.79 -1011757.88 1A 1780			64			0252016
TREE	481531.68 -1011757.72 1A 1775			59			0252016
TREE	481529.70 -1011758.07 1A 1782			66			0252016
POLE	481555.62 -1011754.84 1A 1754	40		38			0252016
TREE	481530.52 -1011758.28 1A 1764			48			0252016
TREE	481529.82 -1011758.40 1A 1777			61			0252016
TREE	481522.22 -1011758.13 1A 1779			63			0252016
TREE	481529.69 -1011758.49 1A 1777			61			0252016
TREE	481526.26 -1011758.72 1A 1765			49			0252016
TREE	481526.56 -1011758.74 1A 1758			42			0252016
TREE	481526.13 -1011758.73 1A 1764			48			0252016
TREE	481526.36 -1011758.74 1A 1760			44			0252016
TREE	481527.01 -1011758.85 1A 1756			49			0252016
TREE	481529.74 -1011758.79 1A 1772			56			0252016
TREE	481526.79 -1011758.99 1A 1759			43			0252016
TREE	481530.59 -1011758.96 1A 1759			43			0252016
TREE	481529.79 -1011759.03 1A 1775			59			0252016
TREE	481529.77 -1011759.29 1A 1776			60			0252016
TREE	481516.39 -1011757.63 1A 1781			65			0252016
TREE	481531.96 -1011759.13 1A 1769			53			0252016
TREE	481519.61 -1011758.71 1A 1783			67			0252016
TREE	481531.03 -1011759.45 1A 1763			47			0252016
TREE	481531.71 -1011759.38 1A 1765			49			0252016
TREE	481531.54 -1011759.43 1A 1769			53			0252016
POLE	481527.51 -1011759.73 1A 1753	30		37			0252016
POLE	481526.05 -1011759.74 1A 1756		34	40			0252016
POLE	481528.99 -1011759.74 1A 1753		30	37			0252016
POLE	481529.81 -1011759.70 1A 1753	29		37			0252016
TREE	481530.63 -1011800.11 1A 1763			47			0252016
TREE	481517.15 -1011758.80 1A 1785			69			0252016
TREE	481530.82 -1011800.24 1A 1763			47			0252016
TREE	481532.24 -1011800.43 1A 1760			44			0252016
POLE	481556.87 -1011747.65 1A 1768	54		52			0252016
TREE	481530.61 -1011800.77 1A 1758			42			0252016
TREE	481531.77 -1011800.77 1A 1769			53			0252016
TREE	481531.45 -1011800.98 1A 1771			55			0252016
TREE	481514.40 -1011759.07 1A 1780			64			0252016
TREE	481532.00 -1011801.27 1A 1763			47			0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

TREE	481530.57 -1011801.54 1A 1763			47			0252016
TREE	481530.98 -1011801.68 1A 1778			62			0252016
TREE	481530.55 -1011801.98 1A 1757			41			0252016
TREE	481532.12 -1011801.91 1A 1758			42			0252016
TREE	481531.66 -1011801.99 1A 1761			45			0252016
TREE	481531.50 -1011802.02 1A 1759			43			0252016
TREE	481526.51 -1011802.24 1A 1768			52			0252016
TREE	481529.49 -1011802.22 1A 1764			48			0252016
TREE	481525.72 -1011802.24 1A 1767			51			0252016
TREE	481526.05 -1011802.28 1A 1765			49			0252016
TREE	481531.90 -1011802.09 1A 1775			59			0252016
POLE	481530.01 -1011802.33 1A 1755	32	39				0252016
TREE	481532.42 -1011802.15 1A 1767			51			0252016
TREE	481526.46 -1011802.88 1A 1771			55			0252016
TREE	481530.84 -1011802.86 1A 1763			47			0252016
TREE	481531.05 -1011802.94 1A 1764			48			0252016
TREE	481531.67 -1011802.88 1A 1767			51			0252016
TREE	481531.45 -1011802.93 1A 1762			46			0252016
TREE	481531.26 -1011802.97 1A 1762			46			0252016
TREE	481531.86 -1011802.95 1A 1778			62			0252016
TREE	481530.48 -1011803.12 1A 1765			49			0252016
TREE	481532.30 -1011802.95 1A 1764			48			0252016
TREE	481530.44 -1011803.45 1A 1756			40			0252016
TREE	481542.78 -1011800.39 1A 1786			70			0252016
TREE	481530.47 -1011803.75 1A 1769			53			0252016
BLDG	481531.92 -1011803.92 1A 1757	30	41				0252016
TREE	481530.43 -1011804.15 1A 1766			50			0252016
COMMUNICATION TWR	481501.59 -1011754.80 1A 1822	126	106				0252016
TREE	481543.96 -1011801.23 1A 1780			64			0252016
TREE	481530.46 -1011804.95 1A 1758			42			0252016
POLE	481530.63 -1011805.38 1A 1759			34	43		0252016
POLE	481531.92 -1011805.31 1A 1760			35	44		0252016
TREE	481526.93 -1011805.63 1A 1763			47			0252016
TREE	481527.48 -1011805.64 1A 1760			44			0252016
TREE	481527.50 -1011805.84 1A 1764			48			0252016
TREE	481527.48 -1011806.02 1A 1762			46			0252016
TREE	481545.63 -1011801.77 1A 1795			79			0252016
TREE	481527.47 -1011806.26 1A 1760			44			0252016
TREE	481529.69 -1011807.14 1A 1770			54			0252016
TREE	481529.34 -1011807.26 1A 1778			62			0252016
TREE	481526.73 -1011807.36 1A 1764			48			0252016
TREE	481531.36 -1011807.32 1A 1760			44			0252016

TREE	481545.65 -1011803.38 1A 1803			87			0252016
TREE	481529.66 -1011808.70 1A 1770			54			0252016
TREE	481526.23 -1011809.50 1A 1778			62			0252016
TREE	481529.06 -1011809.90 1A 1763			47			0252016
STEEPLE	481531.45 -1011809.76 1A 1768	41	52				0252016
TREE	481529.61 -1011810.40 1A 1764			48			0252016
TREE	481526.87 -1011810.55 1A 1774			58			0252016
TREE	481529.05 -1011810.76 1A 1776			60			0252016
TREE	481545.19 -1011806.86 1A 1803			87			0252016
TREE	481527.12 -1011806.98 1A 1764			48			0252016
TREE	481528.15 -1011811.10 1A 1780			64			0252016
TREE	481528.54 -1011811.10 1A 1791			75			0252016
POLE	481610.77 -1011743.93 1A 1744	28	28				0252016
TREE	481525.58 -1011811.67 1A 1782			66			0252016
TREE	481527.84 -1011812.41 1A 1778			62			0252016
POLE	481610.66 -1011745.81 1A 1744	29	28				0252016
TREE	481529.86 -1011812.64 1A 1767			51			0252016
TREE	481528.11 -1011812.72 1A 1772			56			0252016
TREE	481527.63 -1011812.73 1A 1781			65			0252016
TREE	481526.95 -1011812.77 1A 1777			61			0252016
TREE	481528.36 -1011812.81 1A 1772			56			0252016
TREE	481529.42 -1011812.92 1A 1785			69			0252016
POLE	481612.54 -1011743.92 1A 1745	28	29				0252016
TREE	481548.05 -1011808.19 1A 1806			90			0252016
TREE	481528.80 -1011813.47 1A 1798			82			0252016
TREE	481529.74 -1011813.46 1A 1783			67			0252016
TREE	481527.05 -1011813.52 1A 1775			59			0252016
TREE	481529.10 -1011813.68 1A 1783			67			0252016
TREE	481532.10 -1011813.49 1A 1770			54			0252016
TREE	481532.24 -1011813.49 1A 1769			53			0252016
TREE	481529.92 -1011813.71 1A 1768			52			0252016
TREE	481529.10 -1011813.97 1A 1785			69			0252016
POLE	481612.13 -1011745.81 1A 1744	28	28				0252016
TREE	481515.05 -1011807.89 1A 1810			94			0252016
TREE	481530.71 -1011814.67 1A 1770			54			0252016
TREE	481531.87 -1011814.63 1A 1789			73			0252016
TREE	481531.51 -1011814.72 1A 1797			81			0252016
TREE	481532.73 -1011814.59 1A 1776			60			0252016
TREE	481527.55 -1011814.92 1A 1775			59			0252016
TREE	481525.43 -1011814.98 1A 1774			58			0252016
TREE	481531.27 -1011814.96 1A 1788			72			0252016
POLE	481614.29 -1011743.91 1A 1746	29	30				0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

TREE	481528.14 -1011815.21 1A 1769			53			0252016
TREE	481533.20 -1011814.84 1A 1782			66			0252016
TREE	481528.33 -1011815.23 1A 1783			67			0252016
TREE	481532.15 -1011815.13 1A 1798			82			0252016
TREE	481526.42 -1011815.49 1A 1773			57			0252016
TREE	481529.47 -1011815.56 1A 1775			59			0252016
TREE	481527.79 -1011815.71 1A 1784			68			0252016
TREE	481528.42 -1011815.72 1A 1775			59			0252016
POLE	481613.82 -1011745.89 1A 1745	29	29				0252016
TREE	481531.40 -1011815.84 1A 1800			84			0252016
TREE	481525.07 -1011815.97 1A 1777			61			0252016
TREE	481525.77 -1011816.10 1A 1769			53			0252016
TREE	481527.97 -1011816.87 1A 1771			55			0252016
POLE	481616.04 -1011743.91 1A 1745	29	29				0252016
TREE	481527.49 -1011817.19 1A 1783			67			0252016
TREE	481526.73 -1011817.19 1A 1785			69			0252016
TREE	481525.91 -1011817.20 1A 1781			65			0252016
TREE	481528.66 -1011817.33 1A 1771			55			0252016
TREE	481532.75 -1011817.17 1A 1789			73			0252016
TREE	481532.35 -1011817.22 1A 1775			59			0252016
TREE	481532.98 -1011817.22 1A 1783			67			0252016
POLE	481615.50 -1011745.89 1A 1745	30	29				0252016
TREE	481526.85 -1011817.91 1A 1809			93			0252016
TREE	481529.84 -1011818.24 1A 1787			71			0252016
TREE	481526.85 -1011818.99 1A 1777			61			0252016
POLE	481617.91 -1011743.92 1A 1756	38	40				0252016
TREE	481525.04 -1011819.23 1A 1778			62			0252016
TREE	481528.82 -1011819.31 1A 1794			78			0252016
TREE	481529.07 -1011819.48 1A 1787			71			0252016
TREE	481527.68 -1011819.59 1A 1775			59			0252016
TREE	481528.17 -1011819.63 1A 1783			67			0252016
TREE	481532.26 -1011819.39 1A 1777			61			0252016
TREE	481527.99 -1011819.66 1A 1777			61			0252016
TREE	481526.97 -1011819.66 1A 1802			86			0252016
TREE	481528.35 -1011819.69 1A 1781			65			0252016
POLE	481617.26 -1011745.89 1A 1756	38	40				0252016
TREE	481530.72 -1011820.10 1A 1796			80			0252016
TREE	481531.15 -1011820.12 1A 1801			85			0252016
TREE	481533.27 -1011820.98 1A 1805			89			0252016
TREE	481532.96 -1011820.03 1A 1792			76			0252016
TREE	481524.79 -1011820.42 1A 1785			69			0252016
TREE	481533.31 -1011820.76 1A 1779			63			0252016

TREE	481526.48 -1011821.37 1A 1775			59			0252016
POLE	481525.58 -1011821.76 1A 1776			60			0252016
POLE	481619.23 -1011745.80 1A 1756	38	40				0252016
TREE	481525.86 -1011822.64 1A 1781			65			0252016
TREE	481529.54 -1011822.71 1A 1776			60			0252016
TREE	481526.19 -1011822.77 1A 1777			61			0252016
TREE	481532.60 -1011824.17 1A 1786			70			0252016
TREE	481532.46 -1011824.21 1A 1779			63			0252016
TREE	481532.00 -1011824.78 1A 1780			64			0252016
TREE	481532.74 -1011824.89 1A 1804			88			0252016
TREE	481533.49 -1011825.03 1A 1782			66			0252016
TREE	481525.16 -1011825.54 1A 1782			66			0252016
TREE	481526.08 -1011825.73 1A 1788			72			0252016
TREE	481533.32 -1011827.57 1A 1804			88			0252016
TREE	481533.78 -1011827.82 1A 1804			88			0252016
POLE	481448.04 -1011511.10 1A 1702	34	-14				0252016
TREE	481533.52 -1011828.15 1A 1806			90			0252016
TREE	481533.33 -1011828.50 1A 1800			84			0252016
TREE	481435.83 -1011525.14 1A 1697			-19			0252016
TREE	481435.14 -1011525.29 1A 1697			-19			0252016
TREE	481639.93 -1011626.85 1B 1716			0			0252016
TREE	481527.13 -1011830.71 1A 1787			71			0252016
TREE	481449.28 -1011507.13 1A 1690			-26			0252016
TREE	481527.45 -1011830.83 1A 1789			73			0252016
TREE	481529.82 -1011830.87 1A 1786			70			0252016
TREE	481528.55 -1011831.03 1A 1790			74			0252016
TREE	481524.42 -1011831.29 1A 1814			98			0252016
TREE	481633.60 -1011730.34 1A 1759			43			0252016
TREE	481525.08 -1011831.71 1A 1785			69			0252016
TREE	481524.83 -1011832.07 1A 1794			78			0252016
TREE	481525.89 -1011832.29 1A 1790			74			0252016
TREE	481525.72 -1011448.99 1A 1687			-29			0252016
BLDG	481526.80 -1011832.87 1A 1803	59	87				0252016
TREE	481524.45 -1011832.88 1A 1791			75			0252016
TREE	481524.35 -1011833.36 1A 1794			78			0252016
TREE	481431.85 -1011525.13 1A 1696			-26			0252016
TREE	481524.64 -1011833.54 1A 1792			76			0252016
TREE	481533.68 -1011833.89 1A 1790			74			0252016
TREE	481530.18 -1011447.27 1A 1683			-33			0252016
TREE	481642.71 -1011625.00 1B 1719			3			0252016
TREE	481524.47 -1011834.60 1A 1793			77			0252016
BLDG	481414.78 -1011715.17 1B 1744			194	28		0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

TREE	481527.23 -1011446.32 1A 1696			-20			0252016
TREE	481526.95 -1011836.55 1A 1792			76			0252016
TREE	481527.60 -1011836.55 1A 1792			76			0252016
TREE	481527.15 -1011836.56 1A 1794			78			0252016
TREE	481525.76 -1011836.53 1A 1791			75			0252016
TREE	481525.52 -1011836.53 1A 1791			75			0252016
TREE	481525.96 -1011836.56 1A 1792			76			0252016
TREE	481528.42 -1011836.58 1A 1791			75			0252016
TREE	481526.27 -1011836.57 1A 1792			76			0252016
TREE	481528.65 -1011836.59 1A 1791			75			0252016
TREE	481428.30 -1011526.43 1A 1692			-24			0252016
TREE	481525.26 -1011837.53 1A 1797			81			0252016
COMMUNICATION TWR	481536.31 -1011836.96 1A 1841	103	125				0252016
TREE	481550.57 -1011832.55 1A 1824			108			0252016
TK	481434.44 -1011515.10 1A 1701	60	-15				0252016
TREE	481525.27 -1011837.97 1A 1795			79			0252016
TREE	481527.35 -1011838.08 1A 1794			78			0252016
TREE	481527.19 -1011838.24 1A 1796			80			0252016
TREE	481526.63 -1011838.57 1A 1794			78			0252016
TREE	481525.37 -1011838.54 1A 1795			79			0252016
TREE	481525.06 -1011839.05 1A 1797			81			0252016
TREE	481426.79 -1011525.21 1A 1694			-22			0252016
TREE	481525.48 -1011839.82 1A 1800			84			0252016
BLDG	481525.02 -1011840.24 1A 1789	32	73				0252016
TREE	481504.17 -1011835.49 1A 1799			83			0252016
TREE	481528.74 -1011440.71 1A 1685			-31			0252016
TRMSN TWR	481425.73 -1011523.64 1A 1696	70	-20				0252016
TREE	481629.45 -1011758.02 1A 1775			59			0252016
TREE	481610.56 -1011823.16 1A 1798			82			0252016
TREE	481609.93 -1011823.79 1A 1808			92			0252016
TREE	481525.23 -1011842.59 1A 1798			82			0252016
TREE	481519.80 -1011842.20 1A 1832			116			0252016
TREE	481525.20 -1011842.79 1A 1800			84			0252016
TRMSN TWR	481424.83 -1011523.01 1A 1694	68	-22				0252016
TK	481427.75 -1011514.62 1A 1705	63	-11				0252016
TREE	481649.29 -1011705.71 1B 1756			40			0252016
POLE	481522.97 -1011846.05 1A 1807	39	91				0252016
TREE	481632.29 -1011803.60 1A 1782			66			0252016
TREE	481632.28 -1011803.85 1A 1780			64			0252016
POLE	481530.98 -1011848.74 1A 1787	42	71				0252016
TRMSN TWR	481425.72 -1011511.45 1A 1697	62	-19				0252016
TREE	481633.54 -1011803.29 1A 1786			70			0252016

TREE	481634.27 -1011802.53 1A 1758	30	42				0252016
TREE	481633.22 -1011804.96 1A 1791			75			0252016
TREE	481634.04 -1011803.86 1A 1784			68			0252016
TREE	481634.63 -1011804.98 1A 1796			80			0252016
TREE	481634.60 -1011805.30 1A 1793			77			0252016
TREE	481634.54 -1011805.71 1A 1785			69			0252016
POLE	481634.28 -1011807.43 1A 1757	29	41				0252016
POLE	481530.63 -1011853.10 1A 1790	42	74				0252016
COMMUNICATION TWR	481638.94 -1011759.25 1A 1800	72	84				0252016
FENCE	481528.60 -1011425.62 1A 1682	4	-34				0252016
FENCE	481530.49 -1011425.67 1A 1677	4	-39				0252016
FENCE	481528.04 -1011425.59 1A 1682	4	-34				0252016
FENCE	481526.99 -1011425.54 1A 1680	4	-36				0252016
TREE	481632.81 -1011814.55 1A 1786			70			0252016
BLDG	481358.93 -1011725.11 1B 1753	159	37				0252016
TREE	481633.73 -1011820.82 1A 1781			65			0252016
POLE	481634.20 -1011820.13 1A 1773	40	57				0252016
BLDG	481605.70 -1011850.52 1A 1793	49	77				0252016
POLE	481634.50 -1011822.79 1A 1774	41	58				0252016
BLDG	481629.43 -1011832.79 1A 1786	49	70				0252016
WATER TWR	481547.12 -1011904.58 1A 1908	144	184				0252016
TREE	481351.41 -1011731.09 1B 1756			48			0252016
ANT	481340.09 -1011620.95 1B 1727	154	11				0252016
SIGN	481705.87 -1011750.15 1A 1775	50	59				0252016
TREE	481527.28 -1011349.15 1A 1727			11			0252016
WATER TWR	481335.27 -1011716.72 1B 1843	189	127				0252016
BLDG	481528.56 -1011348.22 1A 1708	31	-8				0252016
TREE	481528.75 -1011348.18 1A 1718			2			0252016
TREE	481658.74 -1011837.32 1A 1785			69			0252016
RIG	481429.84 -1011402.77 1B 1717	108	1				0252016
POLE	481513.83 -1011340.98 1A 1697	25	-19				0252016
GRD	481458.99 -1011344.06 1A 1697	43	-19				0252016
TREE	481324.91 -1011615.53 1B 1776			68			0252016
TREE	481322.31 -1011637.02 1B 1763			47			0252016
WINDMILL	481724.56 -1011755.25 1B 1755	43	39				0252016
POLE	481607.85 -1011944.27 1A 1812	44	96				0252016
TREE	481610.21 -1011943.72 1B 1831			115			0252016
COMMUNICATION TWR	481333.95 -1011458.19 1A 1714	158	-2				0252016
TREE	481553.32 -1011956.09 1A 1843			127			0252016
BLDG	481540.09 -1012001.18 1A 1833	60	117				0252016
TREE	481558.18 -1011324.28 1A 1726			10			0252016

Exhibit L-19 - 2017 MOT UDDF Text (Cont.)

COMMUNICATION TWR	481332.04	-1011455.40	1A 1714	159	-2			0252016
TREE	481549.39	-1011320.91	1A 1714		-2			0252016
TREE	481516.80	-1011315.17	1A 1714		-2			0252016
POLE	481526.73	-1012012.23	1A 1789	53	73			0252016
RIG	481312.52	-1011536.24	1B 1745	177	29			0252016
BLDG	481312.45	-1011516.05	1B 1759	289	43			0252016
COMMUNICATION TWR	481750.84	-1011732.47	1B 1795	133	79			0252016
TREE	481559.49	-1012017.94	1A 1850		134			0252016
TREE	481258.28	-1011559.52	1B 1788		72			0252016
ANT	481306.87	-1011815.38	1B 1956	180	248			0252016
TREE	481729.32	-1011903.26	1A 1788		72			0252016
COMMUNICATION TWR	481715.72	-1011353.92	1B 1824	183	108			0252016
ANT	481338.75	-1011354.54	1A 1690	101	-26			0252016
TREE	481520.45	-1012035.98	1A 1786		70			0252016
COMMUNICATION TWR	481430.97	-1012026.75	1B 1839	190	123			0252016
POLE	481543.60	-1011234.79	1A 1702	53	-14			0252016
TRMSN TWR	481754.10	-1011904.20	1A 1774	55	58			0252016
ANT	481255.33	-1011907.65	1B 2447	690	731			0252016
TREE	481334.51	-1011301.87	1A 1699		-17			0252016
RIG	481419.57	-1011216.80	1B 1776	161	60			0252016
TREE	481302.44	-1011330.09	1A 1685		-31			0252016
ANT	481237.63	-1011428.08	1B 1740	199	24			0252016
COMMUNICATION TWR	481213.16	-1011626.18	1B 1916	185	200			0252016
ANT	481646.93	-1012110.51	1B 1997	191	281			0252016
TREE	481731.33	-1012045.39	1A 1822		106			0252016
TRMSN TWR	481240.55	-1011320.97	1A 1685	50	-31			0252016
BLDG	481757.43	-1012026.13	1A 1773	32	57			0252016
TRMSN TWR	481522.23	-1011113.43	1A 1698	59	-18			0252016

| Additional Information:

| THE NATIONAL GEODETIC SURVEY (NGS) CONDUCTED A VALIDATION REVIEW ON THIS SURVEY.

| THE SOURCE SURVEY DATA WAS RETRIEVED FROM THE FAA AIRPORTS SURVEY-GIS PROGRAM MOT-176937.

| THE DATA WAS COLLECTED IN ACCORDANCE WITH FAA ADVISORY CIRCULAR 150/5300-18B SPECIFICATIONS.

| THE DATA WAS VALIDATED THROUGH A MODIFIED NGS QA REVIEW PROCESS (DID NOT INCLUDE VERIFICATION OF THE DATA RELATIVE TO A SOURCE OF KNOWN ACCURACY).

| THIS UDDF WAS CREATED BY NGS AND POSTED TO THE FAA THIRD PARTY SURVEY SYSTEM (TPSS) AS REQUESTED BY FAA AERONAUTICAL INFORMATION SERVICES (AIS).

| ANCILLARY INFORMATION (NOT REPORTED IN THE RETRIEVED FILES) WAS OBTAINED FROM FAA PUBLICATIONS AND ADDED TO THE FILE BY NGS. COMPUTED DATA VALUES WERE DERIVED BY NGS USING THE SUBMITTED INFORMATION AND ADDED TO THE FILE. IN ADDITION, THE SUBMITTED DATA WAS CORRECTED WHEN NECESSARY AND PRACTICAL AND/OR DATA WAS ADDED TO THE DATASET BY NGS.

| Features reported in the third segment of the NAVAID section are not considered "safety critical" per AC 150/5300-18B and were not reviewed by NGS.

| TO THE BEST OF NGS'S KNOWLEDGE THE AERONAUTICAL DATA IN THIS FILE REPRESENT FEATURES THAT EXISTED AT THE TIME OF SURVEY.

| OM (31_MOT) REPORTED AS DECOMMISSIONED ON FAA PUBLICATIONS.

| EOF